Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 11, pp 2283–2290 | Cite as

Shedding light on confounding factors likely to affect salivary infrared biosignatures

  • Stéphane Derruau
  • Cyril Gobinet
  • Adeline Mateu
  • Valérie Untereiner
  • Sandrine Lorimier
  • Olivier PiotEmail author
Research Paper

Abstract

Total human saliva is a biofluid which can be considered as a “mirror” reflecting the state of the body’s health. The “spectral mid-infrared fingerprint” represents a snapshot of the intrinsic biomolecular composition of a saliva sample translating multiple information about the patient, and likely to be related not only to his physiopathological status but also to his behavioral habits or even current medical treatments. These different patient-related characteristics are “confounding factors,” which may strongly affect the infrared data of salivary samples and disrupt the search for specific salivary biomarkers in the detection of diseases, especially in the case of complex pathologies influenced by multiple risk factors such as genetic factors and behavioral factors, and also other comorbidities. In this study, dealing with the processing of infrared saliva spectra from 56 patients, our aim was to highlight spectral features associated with some patient characteristics, namely tobacco smoking, periodontal diseases, and gender. By using multivariate statistical methods of feature selection (principal component analysis coupled with Kruskal–Wallis test, linear discriminant analysis coupled with randfeatures function), we were able to identify the discriminant vibrations associated with a specific factor and to assess the related spectral variability. Based on the methodology demonstrated here, it could be very valuable in the future to develop processing aimed at neutralizing these variabilities, in order to determine specific spectroscopic markers related to a multifactorial disease for diagnostic or follow-up purposes.

Keywords

Infrared spectroscopy Saliva Confounding factors Spectral variability Diagnostic biosignatures 

Notes

Acknowledgements

The authors gratefully acknowledge the Association Française pour la Recherche sur l’Hidrosadénite (AFRH) and the Association Française d’Épargne et de Retraite (AFER).

The authors thank Dr. Marie-Pascale Hippolyte, University Hospital of Reims, for improving the English presentation of this manuscript.

Compliance with ethical standards

This study was approved by the French Ethics Committee for the Protection of Individuals Consenting to Biomedical Research (No. 18019), by the French National Agency for Medicines and Health Products Safety (2018-A0016451), and by ClinicalTrials.gov (NCT03553888).

Conflict of interest

The authors declare that they have no conflict to declare.

References

  1. 1.
    Schafer CA, Schafer JJ, Yakob M, Lima P, Camargo P, Wong DTW. Saliva diagnostics: utilizing oral fluids to determine health status. Monogr Oral Sci. 2014;24:88–98.CrossRefGoogle Scholar
  2. 2.
    Beale D, Jones O, Karpe A, Dayalan S, Oh D, Kouremenos K, et al. A review of analytical techniques and their application in disease diagnosis in breathomics and salivaomics research. Int J Mol Sci. 2016;18:24.CrossRefGoogle Scholar
  3. 3.
    Kaczor-Urbanowicz KE, Martin Carreras-Presas C, Aro K, Tu M, Garcia-Godoy F, Wong DT. Saliva diagnostics – current views and directions. Exp Biol Med. 2017;242:459–72.CrossRefGoogle Scholar
  4. 4.
    Wang X, Kaczor-Urbanowicz KE, Wong DTW. Salivary biomarkers in cancer detection. Med Oncol Northwood Lond Engl. 2017;34:7.CrossRefGoogle Scholar
  5. 5.
    Wang A, Wang C, Tu M, Wong D. Oral biofluid biomarker research: current status and emerging frontiers. Diagnostics. 2016;6:45.CrossRefGoogle Scholar
  6. 6.
    Lawrence HP. Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health. J Can Dent Assoc. 2002;68:170–4.Google Scholar
  7. 7.
    Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, et al. Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev. 2016;45:1803–18.CrossRefGoogle Scholar
  8. 8.
    Kuku G, Saricam M, Akhatova F, Danilushkina A, Fakhrullin R, Culha M. Surface-enhanced Raman scattering to evaluate nanomaterial cytotoxicity on living cells. Anal Chem. 2016;88:9813–20.CrossRefGoogle Scholar
  9. 9.
    Gowen AA, Feng Y, Gaston E, Valdramidis V. Recent applications of hyperspectral imaging in microbiology. Talanta. 2015;137:43–54.CrossRefGoogle Scholar
  10. 10.
    Petrich W, Lewandrowski KB, Muhlestein JB, Hammond MEH, Januzzi JL, Lewandrowski EL, et al. Potential of mid-infrared spectroscopy to aid the triage of patients with acute chest pain. Analyst. 2009;134:1092.CrossRefGoogle Scholar
  11. 11.
    Khaustova S, Shkurnikov M, Tonevitsky E, Artyushenko V, Tonevitsky A. Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst. 2010;135:3183.CrossRefGoogle Scholar
  12. 12.
    Simsek Ozek N, Zeller I, Renaud DE, Gümüş P, Nizam N, Severcan F, et al. Differentiation of chronic and aggressive periodontitis by FTIR spectroscopy. J Dent Res. 2016;95:1472–8.CrossRefGoogle Scholar
  13. 13.
    Bottoni U, Tiriolo R, Pullano SA, Dastoli S, Amoruso GF, Nistico SP, et al. Infrared saliva analysis of psoriatic and diabetic patients: similarities in protein components. IEEE Trans Biomed Eng. 2016;63:379–84.CrossRefGoogle Scholar
  14. 14.
    Armenta S, Garrigues S, de la Guardia M, Brassier J, Alcalà M, Blanco M. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid–liquid extraction. J Chromatogr A. 2015;1384:1–8.CrossRefGoogle Scholar
  15. 15.
    Rodrigues LM, Magrini TD, Lima CF, Scholz J, da Silva Martinho H, Almeida JD. Effect of smoking cessation in saliva compounds by FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2017;174:124–9.CrossRefGoogle Scholar
  16. 16.
    Diem M. Comments on recent reports on infrared spectral detection of disease markers in blood components. J Biophotonics. 2018;11:e201800064.CrossRefGoogle Scholar
  17. 17.
    Schane RE, Glantz SA, Ling PM. Social smoking. Am J Prev Med. 2009;37:124–31.CrossRefGoogle Scholar
  18. 18.
    Caton J G, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman K S, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - introduction and key changes from the 1999 classification. J Clin Periodontol. 2018;45:S1–8.CrossRefGoogle Scholar
  19. 19.
    Untereiner V, Dhruvananda Sockalingum G, Garnotel R, Gobinet C, Ramaholimihaso F, Ehrhard F, et al. Bile analysis using high-throughput FTIR spectroscopy for the diagnosis of malignant biliary strictures: a pilot study in 57 patients: spectral diagnosis of malignant biliary strictures. J Biophotonics. 2014;7:241–53.CrossRefGoogle Scholar
  20. 20.
    Helm D, Labischinski H, Naumann D. Elaboration of a procedure for identification of bacteria using Fourier-transform IR spectral libraries: a stepwise correlation approach. J Microbiol Methods. 1991;14:127–42.CrossRefGoogle Scholar
  21. 21.
    Afseth NK, Kohler A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom Intell Lab Syst. 2012;117:92–9.CrossRefGoogle Scholar
  22. 22.
    Abdi H, Williams LJ. Principal component analysis: principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–59.CrossRefGoogle Scholar
  23. 23.
    Eklouh-Molinier C, Happillon T, Bouland N, Fichel C, Diébold M-D, Angiboust J-F, et al. Investigating the relationship between changes in collagen fiber orientation during skin aging and collagen/water interactions by polarized-FTIR microimaging. Analyst. 2015;140:6260–8.CrossRefGoogle Scholar
  24. 24.
    Schultz CP, Ahmed MK, Dawes C, Mantsch HH. Thiocyanate levels in human saliva: quantitation by Fourier transform infrared spectroscopy. Anal Biochem. 1996;240:7–12.CrossRefGoogle Scholar
  25. 25.
    Takamura A, Watanabe K, Akutsu T, Ozawa T. Soft and robust identification of body fluid using Fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci Rep. 2018;8:8459.CrossRefGoogle Scholar
  26. 26.
    Aggarwal A, Keluskar V, Goyal R, Dahiya P. Salivary thiocyanate: a biochemical indicator of cigarette smoking in adolescents. Oral Health Prev Dent. 2013;11:221–7.Google Scholar
  27. 27.
    Popa C. Infrared spectroscopy study of the influence of inhaled vapors/smoke produced by cigarettes of active smokers. J Biomed Opt. 2014;20:051003.CrossRefGoogle Scholar
  28. 28.
    Xiang XM, Liu KZ, Man A, Ghiabi E, Cholakis A, Scott DA. Periodontitis-specific molecular signatures in gingival crevicular fluid. J Periodontal Res. 2010;45:345–52.CrossRefGoogle Scholar
  29. 29.
    Panjamurthy K, Manoharan S, Ramachandran CR. Lipid peroxidation and antioxidant status in patients with periodontitis. Cell Mol Biol Lett. 2005;10:255–64.Google Scholar
  30. 30.
    Clifton S, Macdowall W, Copas AJ, Tanton C, Keevil BG, Lee DM, et al. Salivary testosterone levels and health status in men and women in the British general population: findings from the Third National Survey of Sexual Attitudes and Lifestyles (Natsal-3). J Clin Endocrinol Metab. 2016;101:3939–51.CrossRefGoogle Scholar
  31. 31.
    Muro CK, de Souza Fernandes L, Lednev IK. Sex determination based on Raman spectroscopy of saliva traces for forensic purposes. Anal Chem. 2016;88:12489–93.CrossRefGoogle Scholar
  32. 32.
    Miller VM. Why are sex and gender important to basic physiology and translational and individualized medicine? Am J Physiol Heart Circ Physiol. 2014;306:H781–8.CrossRefGoogle Scholar
  33. 33.
    García-Blanco A, Vento M, Diago V, Cháfer-Pericás C. Reference ranges for cortisol and α-amylase in mother and newborn saliva samples at different perinatal and postnatal periods. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1022:249–55.CrossRefGoogle Scholar
  34. 34.
    Steiner G, Bartels T, Stelling A, Krautwald-Junghanns M-E, Fuhrmann H, Sablinskas V, et al. Gender determination of fertilized unincubated chicken eggs by infrared spectroscopic imaging. Anal Bioanal Chem. 2011;400:2775–82.CrossRefGoogle Scholar
  35. 35.
    Chee B, Park B, Bartold PM. Periodontitis and type II diabetes: a two-way relationship. Int J Evid Based Healthc. 2013;11:317–29.CrossRefGoogle Scholar
  36. 36.
    Kohorst JJ, Kimball AB, Davis MDP. Systemic associations of hidradenitis suppurativa. J Am Acad Dermatol. 2015;73:S27–35.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Stéphane Derruau
    • 1
    • 2
  • Cyril Gobinet
    • 1
  • Adeline Mateu
    • 1
    • 2
  • Valérie Untereiner
    • 3
  • Sandrine Lorimier
    • 2
    • 4
  • Olivier Piot
    • 1
    • 3
    Email author
  1. 1.BioSpecT EA7506, Faculty of PharmacyUniversity of Reims Champagne-ArdenneReims CedexFrance
  2. 2.Oral Medicine DepartmentUniversity Hospital of ReimsReims CedexFrance
  3. 3.Platform of Cellular and Tissular Imaging (PICT-URCA)University of Reims Champagne-ArdenneReims CedexFrance
  4. 4.GRESPI, EA 4694, Research Group in Engineering SciencesUniversity of Reims Champagne-ArdenneReims Cedex 2France

Personalised recommendations