Skip to main content

Sizing silver nanoparticles in chicken meat using direct slurry sampling graphite furnace atomic absorption spectrometry

Abstract

Recently, graphite furnace atomic absorption spectrometry (GFAAS) has been suggested as a tool for detection and sizing of metal nanoparticles (NPs) providing several advantages, such as direct analysis of solid samples, high sample throughput, and robust and cost-efficient instrumentation. For this purpose, evaluation of newly introduced criteria of the absorbance signal, namely, atomization delay (tad) and atomization rate (kat), is performed. However, in real samples, NPs are typically stabilized by either engineered coating reagents or natural materials and occur in unknown concentration. Hence, systematic investigation of possible influences of nine different coating reagents and of Ag concentration on the atomization behavior of silver nanoparticles (AgNPs) was studied. Evaluation of absorption signal characteristics revealed no influence of the coating or Ag concentration on the observed parameters. Furthermore, size-dependent measurements gave reproducible size correlation independent from the coating. Validity of sizing AgNPs with the proposed approach was successfully proven by investigation of two reference materials. The found size of 74.3 ± 5.9 nm in RM 8017 (NIST) agrees very well with the certified size of 74.6 ± 3.8 nm. Moreover, AgNP size of 25.1 ± 2.5 nm found by direct slurry sampling GFAAS in matrix reference material “NanoLyse13”—chicken meat homogenate spiked with PVP-AgNPs—was in very good agreement with the reference value of 27.3 ± 5.3 nm as determined by TEM.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6:1769–80. https://doi.org/10.3762/bjnano.6.181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. ‘BfR rät von Nanosilber in Lebensmitteln und Produkten des täglichen Bedarfs ab’ - Stellungnahme Nr. 024/2010 des BfR vom 28. Dezember 2009. In: https://www.bfr.bund.de/de/bfr_stellungnahmen_2009.html. Accessed 20 Feb 2019.

  3. Grombe R, Allmaier G, Charoud-Got J, Dudkiewicz A, Emteborg H, Hofmann T, et al. Feasibility of the development of reference materials for the detection of Ag nanoparticles in food: neat dispersions and spiked chicken meat. Accreditation Qual Assur. 2015;20:3–16. https://doi.org/10.1007/s00769-014-1100-5.

    Article  CAS  Google Scholar 

  4. Tiede K, Boxall ABA, Wang X, Gore D, Tiede D, Baxter M, et al. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. J Anal At Spectrom. 2010;25:1149. https://doi.org/10.1039/b926029c.

    Article  CAS  Google Scholar 

  5. Desai R, Mankad V, Gupta S, Jha P. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci Nanotechnol Lett. 2012;4:30–4. https://doi.org/10.1166/nnl.2012.1278.

    Article  CAS  Google Scholar 

  6. Feichtmeier NS, Leopold K. Detection of silver nanoparticles in parsley by solid sampling high-resolution–continuum source atomic absorption spectrometry. Anal Bioanal Chem. 2014;406:3887–94. https://doi.org/10.1007/s00216-013-7510-0.

    Article  CAS  PubMed  Google Scholar 

  7. Feichtmeier NS, Ruchter N, Zimmermann S, Sures B, Leopold K. A direct solid sampling analysis method for the detection of silver nanoparticles in biological matrices. Anal Bioanal Chem. 2016;408:295–305. https://doi.org/10.1007/s00216-015-9108-1.

    Article  CAS  PubMed  Google Scholar 

  8. Gagné F, Turcotte P, Gagnon C. Screening test of silver nanoparticles in biological samples by graphite furnace-atomic absorption spectrometry. Anal Bioanal Chem. 2012;404:2067–72. https://doi.org/10.1007/s00216-012-6258-2.

    Article  CAS  PubMed  Google Scholar 

  9. Gruszka J, Zambrzycka E, Kulpa JS, Godlewska-Zylkiewicz B. Discrimination between ionic silver and silver nanoparticles in consumer products using graphite furnace atomic absorption spectrometry. J Anal At Spectrom. 2018. https://doi.org/10.1039/C8JA00310F.

  10. Leopold K, Brandt A, Tarren H. Sizing gold nanoparticles using graphite furnace atomic absorption spectrometry. J Anal Spectrom. 2017;32:723–30. https://doi.org/10.1039/C7JA00019G.

    Article  CAS  Google Scholar 

  11. Resano M, Garcia-Ruiz E, Garde R. High-resolution continuum source graphite furnace atomic absorption spectrometry for the monitoring of Au nanoparticles. J Anal Spectrom. 2016;31:2233–41. https://doi.org/10.1039/C6JA00280C.

    Article  CAS  Google Scholar 

  12. Panyabut T, Sirirat N, Siripinyanond A. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles. Anal Chim Acta. 2018;1000:75–84. https://doi.org/10.1016/j.aca.2017.09.032.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci. 2014;204:15–34. https://doi.org/10.1016/j.cis.2013.12.002.

    Article  CAS  Google Scholar 

  14. Bastús NG, Merkoçi F, Piella J, Puntes V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater. 2014;26:2836–46. https://doi.org/10.1021/cm500316k.

    Article  CAS  Google Scholar 

  15. Weigel S, Peters R, Loeschner K, Grombe R, Linsinger TPJ. Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Anal Bioanal Chem. 2017;409:4839–48. https://doi.org/10.1007/s00216-017-0427-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Degenkolb L, Metreveli G, Philippe A, Brandt A, Leopold K, Zehlike L, et al. Retention and remobilization mechanisms of environmentally aged silver nanoparticles in an artificial riverbank filtration system. Sci Total Environ. 2018;645:192–204. https://doi.org/10.1016/j.scitotenv.2018.07.079.

    Article  CAS  PubMed  Google Scholar 

  17. nanoComposix (2017) Stability and shelf life of small PVP silver nanoparticles.pdf; version 1.1. Published December 2017.

  18. Slaveykova V, Manev S, Lazarov D. Application of the Kelvin equation to vaporization of silver and gold in electrothermal atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 1995;50:1725–32. https://doi.org/10.1016/0584-8547(95)01334-2.

    Article  Google Scholar 

  19. Brandt A, Leopold K. Investigation of the atomization mechanism of gold nanoparticles in graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 2018;150:26–32. https://doi.org/10.1016/j.sab.2018.10.004.

    Article  CAS  Google Scholar 

  20. Loeschner K, Navratilova J, Grombe R, Linsinger TPJ, Købler C, Mølhave K, et al. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection. Food Chem. 2015;181:78–84. https://doi.org/10.1016/j.foodchem.2015.02.033.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Joint Research Centre (Geel, Belgium) for the provision of reference material “NanoLyse13,” AgNPs in chicken meat homogenate. For the support with TEM investigation and DLS measurements, the authors acknowledge Prof. Dr. Paul Walther (Electron Microscopy, UUlm) and Roman Schmid (Institute of Inorganic Chemistry II, UUlm), respectively. Moreover, the authors recognize Martin Lämmle’s (UUlm) assistance with some experiments.

Funding

This work was financially supported by the German Research Foundation (Deutsche Forschungsgemeinschaft; DFG; grant number LE 2457/8-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Leopold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Electronic supplementary material

ESM 1

(PDF 1323 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brucker, D., Leopold, K. Sizing silver nanoparticles in chicken meat using direct slurry sampling graphite furnace atomic absorption spectrometry. Anal Bioanal Chem 411, 4551–4558 (2019). https://doi.org/10.1007/s00216-019-01606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01606-7

Keywords

  • Graphite furnace atomic absorption spectrometry
  • Atomization delay
  • Silver nanoparticles
  • Natural and engineered coating reagents
  • Nanoparticle analysis and sizing in real samples
  • Chicken meat reference material