Skip to main content
Log in

DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recently, photosensitized oxidation has been explored in many fields of research and applications, such as photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT). Although the photosensitized generation of ROS features emerging applications, controllable management of the photosensitization process is still sometimes problematic. DNA has long been considered the carrier for genetic information. With the in-depth study of the chemical properties of DNA, the molecular function of DNA is gradually witnessed by the scientific community. Undoubtedly, the selective recognition nature of DNA endows them excellent candidate modulators for photosensitized oxidation. According to current research, reports on DNA regulation of photosensitized oxidation can be roughly divided into two categories in principle: P-Q quenching pair-switched photosensitization and host-guest interaction-switched photosensitization. In this review, the development status of these two analytical methods will be summarized, and the future development direction of DNA-modulated photosensitization in biosensing and environmental monitoring will also be prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Foote CS. Mechanisms of photosensitized oxidation. Science. 1968;162:963–70.

    Article  CAS  PubMed  Google Scholar 

  2. Xu ST, Zhu XY, Zhang C, Huang W, Zhou YF, Yan DY. Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat Commun. 2018;9:2053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu Y, Lin WH, Zhang W, Feng YQ, Wu ZN, Chen L, et al. PEGylated BODIPY assembling fluorescent nanoparticles for photodynamic therapy. Chin Chem Lett. 2017;28:1875–7.

    Article  CAS  Google Scholar 

  4. Liu C, Kong D, Hsu PC, Yuan H, Lee HW, Liu Y, et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol. 2016;11:1098–104.

    Article  CAS  PubMed  Google Scholar 

  5. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, et al. Targeting telomeres and telomerase. Biochimie. 2008;90:131–55.

    Article  CAS  PubMed  Google Scholar 

  6. Wu WB, Mao D, Xu SD, Kenry HF, Li XQ, Kong DL, et al. Polymerization-enhanced photosensitization. Chem. 2018;4:1762–4.

    Article  CAS  Google Scholar 

  7. Adam W, Bruenker HG. Diastereoselective and regioselective photooxygenation of a chiral allylic amine and its acyl derivatives: stereochemical evidence for a steering effect by the amino group in the ene reaction of singlet oxygen. J Am Chem Soc. 1993;115:3008–9.

    Article  CAS  Google Scholar 

  8. Margaros L, Montagnon T, Tofi M, Pavlakos E, Vassilikogiannakis G. The power of singlet oxygen chemistry in biomimetic syntheses. Tetrahedron. 2006;62:5308–17.

    Article  CAS  Google Scholar 

  9. Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996;14:303–8.

    Article  CAS  PubMed  Google Scholar 

  10. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–81.

    Article  CAS  PubMed  Google Scholar 

  11. Watson JD, Crick FHC. Genetical implications of the structure of deoxyribonucleic acid. Nature. 2017;269:1967–9.

    Google Scholar 

  12. Michel F, Ellington AD, Couture S, Szostak JW. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature. 1990;347:578–80.

    Article  CAS  PubMed  Google Scholar 

  13. Breaker RR, Joyce GF. A DNA enzyme that cleaves RNA. Chem Biol. 1994;1:223–9.

    Article  CAS  PubMed  Google Scholar 

  14. Svoboda P, Cara AD. Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci. 2006;63:901–8.

    Article  CAS  PubMed  Google Scholar 

  15. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A. 2002;99:11593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334:364–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sundquist WI, Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989;342:825–9.

    Article  CAS  PubMed  Google Scholar 

  18. Day HA, Pavlou P, Waller ZAE. i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem. 2014;22:4407–18.

    Article  CAS  PubMed  Google Scholar 

  19. Kruk NN, Dzhagarov BM, Galievsky VA, Chirvony VS, Turpin PY. Photophysics of the cationic 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin bound to DNA, poly(dA-dT) (2) and poly(dG-dC) (2): interaction with molecular oxygen studied by porphyrin triplet-triplet absorption and singlet oxygen luminescence. J Photochem Photobiol B Biol. 1998;42:181–90.

    Article  CAS  Google Scholar 

  20. Han HY, Langley DR, Rangan A, Hurley LH. Selective interactions of cationic porphyrins with G-quadruplex structures. J Am Chem Soc. 2001;123:8902–13.

    Article  CAS  PubMed  Google Scholar 

  21. Liu T, Zhang F, Chen P, Tang GQ, Lin L. Correlation of photosensitization and binding mode of methylene blue and DNA. Chin Phys Lett. 2011;28:115–8.

    CAS  Google Scholar 

  22. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988;85:6622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirakawa K, Kawanishi S, Hirano T. The mechanism of guanine specific photooxidation in the presence of berberine and palmatine: activation of photosensitized singlet oxygen generation through DNA-binding interaction. Chem Res Toxicol. 2005;18:1545–52.

    Article  CAS  PubMed  Google Scholar 

  24. Cló E, Snyder JW, Voigt NV, Ogilby PR, Gothelf KV. DNA-programmed control of photosensitized singlet oxygen production. J Am Chem Soc. 2006;128:4200–1.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Z, Tang ZW, Phillips JA, Yang RH, Wang H, Tan WH. Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc. 2008;130:10856–7.

    Article  CAS  PubMed  Google Scholar 

  26. Tørring T, Toftegaard R, Arnbjerg J, Ogilby PR, Gothelf KV. Reversible pH-regulated control of photosensitized singlet oxygen production using a DNA i-motif. Angew Chem Int Ed. 2010;49:7923–5.

    Article  CAS  Google Scholar 

  27. Nogueira JJ, Oppel M, Gonzalez L. Enhancing intersystem crossing in phenotiazinium dyes by intercalation into DNA. Angew Chem Int Ed. 2015;54:4375–8.

    Article  CAS  Google Scholar 

  28. Zhang XF, Huang CP, Xu SX, Chen JB, Zeng Y, Wu P, et al. Photocatalytic oxidation of TMB with the double stranded DNA–SYBR Green I complex for label-free and universal colorimetric bioassay. Chem Commun. 2015;51:14465–8.

    Article  CAS  Google Scholar 

  29. Cló E, Snyder JW, Ogilby PR, Gothelf KV. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. ChemBioChem. 2007;8:475–81.

    Article  CAS  PubMed  Google Scholar 

  30. Tørring T, Helmig S, Ogilby PR, Gothelf KV. Singlet oxygen in DNA nanotechnology. Acc Chem Res. 2014;47:1799–806.

    Article  CAS  PubMed  Google Scholar 

  31. Xodo LE, Cogoi S, Rapozzi V. Photosensitizers binding to nucleic acids as anticancer agents. Future Med Chem. 2016;8:179–94.

    Article  CAS  PubMed  Google Scholar 

  32. Andrews DL. A unified theory of radiative and radiationless molecular energy transfer. Chem Phys. 1989;135:195–201.

    Article  CAS  Google Scholar 

  33. Rotaru A, Mokhir A. Nucleic acid binders activated by light of selectable wavelength. Angew Chem Int Ed. 2007;46:6180–3.

    Article  CAS  Google Scholar 

  34. Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. Proc Natl Acad Sci U S A. 2007;104:8989–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen J, Lovell JF, Lo PC, Stefflova K, Niedre M, Wilson BC, et al. A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production. Photochem Photobiol Sci. 2008;7:775–81.

    Article  CAS  PubMed  Google Scholar 

  36. Arian D, Clo E, Gothelf KV, Mokhir A. A nucleic acid dependent chemical photocatalysis in live human cells. Chem Eur J. 2010;16:288–95.

    Article  CAS  PubMed  Google Scholar 

  37. Lovell JF, Chen J, Huynh E, Jarvi MT, Wilson BC, Zheng G. Facile synthesis of advanced photodynamic molecular beacon architectures. Bioconjug Chem. 2010;21:1023–5.

    Article  CAS  PubMed  Google Scholar 

  38. Tang ZW, Zhu Z, Mallikaratchy P, Yang RH, Sefah K, Tan WH. Aptamer-target binding triggered molecular mediation of singlet oxygen generation. Chem Asian J. 2010;5:783–6.

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Qiao GM, Zhuo LH, Li N, Liu Y, Tang B. A tumor mRNA-mediated bi-photosensitizer molecular beacon as an efficient imaging and photosensitizing agent. Chem Commun. 2011;47:5316–8.

    Article  CAS  Google Scholar 

  40. Han D, Zhu GZ, Wu CC, Zhu Z, Chen T, Zhang XB, et al. Engineering a cell-surface aptamer circuit for targeted and amplified photodynamic cancer therapy. ACS Nano. 2013;7:2312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, et al. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2:338–42.

    Article  CAS  PubMed  Google Scholar 

  42. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim H-S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc. 2005;127:3270–1.

    Article  CAS  PubMed  Google Scholar 

  43. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angew Chem Int Ed. 2009;48:4785–7.

    Article  CAS  Google Scholar 

  44. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeraati M, Langley DB, Schofield P, Moye AL, Rouet R, Hughes WE, et al. I-motif DNA structures are formed in the nuclei of human cells. Nat Chem. 2018;10:631–7.

    Article  CAS  PubMed  Google Scholar 

  46. Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirakawa K, Hirano T. The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine. Photochem Photobiol. 2008;84:202–8.

    CAS  PubMed  Google Scholar 

  48. Hirakawa K, Hirano T, Nishimura Y, Arai T, Nosaka Y. Dynamics of singlet oxygen generation by DNA-binding photosensitizers. J Phys Chem B. 2012;116:3037–44.

    Article  CAS  PubMed  Google Scholar 

  49. Hirakawa K, Hirano T, Nishimura Y, Arai T, Nosaka Y. Control of singlet oxygen generation photosensitized by meso-anthrylporphyrin through interaction with DNA. Photochem Photobiol. 2011;87:833–9.

    Article  CAS  PubMed  Google Scholar 

  50. Hirakawa K, Harada M, Okazaki S, Nosaka Y. Controlled generation of singlet oxygen by a water-soluble meso-pyrenylporphyrin photosensitizer through interaction with DNA. Chem Commun. 2012;48:4770–2.

    Article  CAS  Google Scholar 

  51. Hirakawa K, Nishimura Y, Arai T, Okazaki S. Singlet oxygen generating activity of an electron donor connecting porphyrin photosensitizer can be controlled by DNA. J Phys Chem B. 2013;117:13490–6.

    Article  CAS  PubMed  Google Scholar 

  52. Hirakawa K, Taguchi M, Okazaki S. Relaxation process of photoexcited meso-naphthylporphyrins while interacting with DNA and singlet oxygen generation. J Phys Chem B. 2015;119:13071–8.

    Article  CAS  PubMed  Google Scholar 

  53. Hirakawa K, Ota K, Hirayama J, Oikawa S, Kawanishi S. Nile blue can photosensitize DNA damage through electron transfer. Chem Res Toxicol. 2014;27:649–55.

    Article  CAS  PubMed  Google Scholar 

  54. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    Article  CAS  PubMed  Google Scholar 

  55. Hu H, Zhang JY, Ding Y, Zhang XF, Xu KL, Hou XD, et al. Modulation of the singlet oxygen generation from the double strand DNA-SYBR Green I complex mediated by T-melamine-T mismatch for visual detection of melamine. Anal Chem. 2017;89:5101–6.

    Article  CAS  PubMed  Google Scholar 

  56. Huang CP, Fan XY, Yuan QM, Zhang XF, Hou XD, Wu P. Colorimetric determination of uranyl (UO2 2+) in seawater via DNAzyme-modulated photosensitization. Talanta. 2018;185:258–63.

    Article  CAS  PubMed  Google Scholar 

  57. Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51:2415–8.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang XF, Deng L, Huang CP, Zhang JY, Hou XD, Wu P, et al. Photosensitization of molecular oxygen on graphene oxide for ultrasensitive signal amplification. Chem Eur J. 2018;24:2602–8.

    Article  CAS  PubMed  Google Scholar 

  59. Müller S, Kumari S, Rodriguez R, Balasubramanian S. Small-molecule-mediated G-quadruplex isolation from human cells. Nat Chem. 2010;2:1095–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, et al. Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed. 2009;48:856–70.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received a financial support from the National Natural Science Foundation of China (Nos. 21874093 and 21522505), the Sichuan Youth Science and Technology Foundation (2016JQ0019), and the Fundamental Research Funds for the Central Universities (2018SCUH0075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Yang or Peng Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Dong, Z., Hu, H. et al. DNA-modulated photosensitization: current status and future aspects in biosensing and environmental monitoring. Anal Bioanal Chem 411, 4415–4423 (2019). https://doi.org/10.1007/s00216-019-01605-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01605-8

Keywords

Navigation