Skip to main content

Advertisement

Log in

Simultaneous metabolic mapping of different anatomies by 1H HR-MAS chemical shift imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Localized information on a specimen is considered indispensable for deciphering biological activity. Magnetic resonance spectroscopy is a notable method because of its versatility; however, one limitation is the spectral quality on a static sample. This study explores an amalgamated method with two magnetic resonance experiments: high-resolution magic-angle spinning (HR-MAS) for high-quality spectral acquisition from a spinning sample and chemical shift imaging (CSI) for spatial localization. The advantage of HR-MAS CSI is its amenity for simultaneously profiling the metabolome—with good spectral data—at different spatial regions in a single experiment. Herein, 1H HR-MAS CSI (including a T2-contrast CSI) was described and performed on various food tissues and an intact organism. Different data analyses such as multivariate and quantification were explored to identify the metabolic variants in different anatomical regions and in one case, to assist in a spatial allocation. The limitation and drawback of the experiment are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TMD, Holmes E, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5:1019–32. https://doi.org/10.1038/nprot.2010.45.

    Article  CAS  PubMed  Google Scholar 

  2. Fuss TL, Cheng LL. Evaluation of cancer metabolomics using ex vivo high resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Metabolites. 2016;6:1–22. https://doi.org/10.3390/metabo6010011.

    Article  CAS  Google Scholar 

  3. Sitter B, Bathen TF, Tessem M, Gribbestad IS. High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc. 2009;54:239–54. https://doi.org/10.1016/j.pnmrs.2008.10.001.

    Article  CAS  Google Scholar 

  4. Vermathen M, Müller J, Furrer J, Müller N, Vermathen P. 1H HR-MAS NMR spectroscopy to study the metabolome of the protozoan parasite Giardia lamblia. Talanta. 2018;188:429–41. https://doi.org/10.1016/j.talanta.2018.06.006.

    Article  CAS  PubMed  Google Scholar 

  5. Farooq H, Courtier-murias D, Soong R, Bermel W, Kingery WM, Simpson AJ. HR-MAS NMR spectroscopy: a practical guide for natural samples. Curr Org Chem. 2013;17:3013–31. https://doi.org/10.2174/13852728113179990126.

    Article  CAS  Google Scholar 

  6. Valentini M, Ritota M, Cafiero C, Cozzolino S, Leita L, Sequi P. The HRMAS-NMR tool in foodstuff characterisation. Magn Reson Chem. 2011;49:S121–5. https://doi.org/10.1002/mrc.2826.

    Article  CAS  PubMed  Google Scholar 

  7. Mazzei P, Piccolo A, Valentini M. Intact food analysis by means of HRMAS-NMR spectroscopy. In: Webb GA (ed) Modern magnetic resonance. Springer International Publishing; 2017. pp. 1–16.

  8. Li W. Multidimensional HRMAS NMR: a platform for in vivo studies using intact bacterial cells. Analyst. 2006;131:777–81. https://doi.org/10.1039/b605110c.

    Article  CAS  PubMed  Google Scholar 

  9. Righi V, Constantinou C, Kesarwani M, Rahme LG, Tzika AA. Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for in vivo analysis of Pseudomonas aeruginosa metabolomics. Biomed Rep. 2013;1:707–12. https://doi.org/10.3892/br.2013.148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Righi V, Apidianakis Y, Mintzopoulos D, Astrakas L, Rahme LG, Tzika AA. In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling. Int J Mol Med. 2010;26:175–84. https://doi.org/10.3892/ijmm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarou-Kanian V, Joudiou N, Louat F, Yon M, Szeremeta F, Même S, et al. Metabolite localization in living drosophila using high resolution magic angle spinning NMR. Sci Rep. 2015;5:1–5. https://doi.org/10.1038/srep09872.

    Article  CAS  Google Scholar 

  12. Wind RA, Hu JZ, Rommereim DN. High-resolution 1H NMR spectroscopy in a live mouse subjected to 1.5 Hz magic angle spinning. Magn Reson Med. 2003;50:1113–9. https://doi.org/10.1002/mrm.10650.

    Article  PubMed  Google Scholar 

  13. Wind RA, Hu JZ, Majors PD. Localized in vivo isotropic– anisotropic correlation 1H NMR spectroscopy using ultra-slow magic angle spinning. Magn Reson Med. 2006;55:41–9. https://doi.org/10.1002/mrm.20740.

    Article  CAS  PubMed  Google Scholar 

  14. Pampel A, Zick K, Glauner H. Studying lateral diffusion in lipid bilayer by combining a magic angle spinning NMR probe with a microimaging gradient system. J Am Chem Soc. 2004;126:9534–5. https://doi.org/10.1021/ja0474042.

    Article  CAS  PubMed  Google Scholar 

  15. Yon M, Sarou-kanian V, Scheler U, Bouler J, Bujoli B, Massiot D, et al. Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field. Sci Rep. 2017;7:8224. https://doi.org/10.1038/s41598-017-08458-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clausen MR, Edelenbos M, Bertram HC. Mapping the variation of the carrot metabolome using 1H NMR spectroscopy and consensus PCA. J Agric Food Chem. 2014;62:4392–8. https://doi.org/10.1021/jf5014555.

    Article  CAS  PubMed  Google Scholar 

  17. Gunstone FD. The lipid handbook, 2nd ed. London; 1995. pp. 518–157.

  18. Hoppel C. The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis. 2003;41:S4–S12. https://doi.org/10.1016/S0272-6386(03)00112-4.

    Article  CAS  PubMed  Google Scholar 

  19. Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res. 2016;57:943–54. https://doi.org/10.1194/jlr.R067629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kapranas A, Snart CJP, Williams H, Hardy ICW, Barrett DA. Metabolomics of aging assessed in individual parasitoid wasps. Sci Rep. 2016;6:34848. https://doi.org/10.1038/srep34848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Welsh JH. Composition and mode of action of some invertebrate venoms. Annu Rev. 1963;4:293–305. https://doi.org/10.1146/annurev.pa.04.040164.001453.

    Article  Google Scholar 

  22. Martínez-Yusta A, Guillén MD. A study by 1H nuclear magnetic resonance of the influence on the frying medium composition of some soybean oil-food combinations in deep-frying. Food Res Int. 2014;55:347–55. https://doi.org/10.1016/j.foodres.2013.11.022.

    Article  CAS  Google Scholar 

  23. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohydrate, and cardiovascular disease. Am J Clin Nutr. 2010;91:502–9. https://doi.org/10.3945/ajcn.2008.26285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lucas-Torres C, Huber G, Ichikawa A, Nishiyama Y, Wong A. HR-μMAS NMR-based metabolomics: localized metabolic profiling of a garlic clove with μg tissues. Anal Chem. 2018;90:13736–43. https://doi.org/10.1021/acs.analchem.8b04150.

    Article  CAS  PubMed  Google Scholar 

  25. Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics. 2015;1:92–107. https://doi.org/10.2174/2213235X11301010092.

    Article  Google Scholar 

  26. Wind RA, Hu JZ. In vivo and ex vivo high-resolution 1H NMR in biological systems using low-speed magic angle spinning. Prog Nucl Magn Reson Spectrosc. 2006;49:207–59. https://doi.org/10.1016/j.pnmrs.2006.05.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Franck Fayon and his team (Orleans, France) for their initial assistance on the experimental setup and also to Dr. Gaspard Huber (CEA-Saclay, France) for the discussions and reviewing the manuscript.

Funding

This work was financially supported by Agence Nationale de la Recherché (ANR-16-CE11-0023-01 and ANR-12-JSV5-0005-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, A., Lucas-Torres, C. Simultaneous metabolic mapping of different anatomies by 1H HR-MAS chemical shift imaging. Anal Bioanal Chem 411, 1591–1599 (2019). https://doi.org/10.1007/s00216-019-01603-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01603-w

Keywords

Navigation