Skip to main content
Log in

A generic workflow for the characterization of therapeutic monoclonal antibodies—application to daratumumab

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present analytical workflow, chromatographic methods have been developed and hyphenated to mass spectrometry (MS) for the characterization of protein size, charge, hydrophobic, and hydrophilic variants of daratumumab. Multiple critical quality attributes (CQAs) were characterized in forced degraded daratumumab sample, using size exclusion, ion exchange (IEX), and hydrophobic interaction (HIC) chromatography coupled to fluorescence detection for relative quantification and fractionation. Mass assignment was performed by using a fast, non-denaturing and universal size exclusion chromatography (SEC) method prior to native MS analysis of the collected fractions (off-line approach). This allowed the identification of N-terminal lysine clipping, and the extent of glycation and oxidation at intact protein level. Finally, middle-up analysis of daratumumab was performed using reversed phase (RPLC) and hydrophilic interaction (HILIC) chromatography coupled to MS to obtain a comprehensive overview of all PTMs after the forced stressed conditions and a fine characterization of the glycosylation profile. Conveniently, the presented workflow maintains the established golden standard non-denaturing chromatography techniques and additionally introduces a straightforward and automated desalting procedure prior to MS analysis. Therefore, it is expected that the off-line coupling of SEC, IEX, and HIC to SEC-MS has great potential to be implemented in routine characterization of mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36.

    Article  CAS  PubMed  Google Scholar 

  2. Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chem. 2016;88(1):480–507.

    Article  CAS  PubMed  Google Scholar 

  3. Blair HA. Daratumumab: a review in relapsed and/or refractory multiple myeloma. Drugs. 2017;77(18):2013–24.

    Article  CAS  PubMed  Google Scholar 

  4. European Medicines Agency. Darzalex. Retrieved from. https://bit.ly/2D0fjEH. Accessed 23 October 2018.

  5. Mateos M-V, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518–28.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson & Johnson Reports 2017 Fourth-quarter results. Retrieved from. https://bit.ly/2yWjUn3. Accessed 23 October 2018.

  7. Bobály B, Sipkó E, Fekete J. Challenges in liquid chromatographic characterization of proteins. J Chromatogr B. 2016;1032:3–22.

    Article  CAS  Google Scholar 

  8. D’Atri V, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B. 2018;1080:37–41.

    Article  CAS  Google Scholar 

  9. D’Atri V, Dumont E, Vandenheede I, Guillarme D, Sandra P, Sandra K. Hydrophilic interaction chromatography for the characterization of therapeutic monoclonal antibodies at protein, peptide, and glycan levels. LC-GC Eur. 2017;30(8):424–34.

  10. Nowak C, K. Cheung J, M. Dellatore S, Katiyar A, Bhat R, Sun J, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017;9(8):1217–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King C, Patel R, Ponniah G, Nowak C, Neill A, Gu Z, et al. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis. J Chromatogr B. 2018;1085:96–103.

    Article  CAS  Google Scholar 

  12. Shah DD, Zhang J, Hsieh M, Sundaram S, Maity H, Mallela KMG. Effect of peroxide- versus alkoxyl-induced chemical oxidation on the structure, stability, aggregation, and function of a therapeutic monoclonal antibody. J Pharm Sci. 2018;107(11):2789–803.

    Article  CAS  PubMed  Google Scholar 

  13. Gstöttner C, Klemm D, Haberger M, Bathke A, Wegele H, Bell C, et al. Fast and automated characterization of antibody variants with 4D HPLC/MS. Anal Chem. 2018;90(3):2119–25.

    Article  CAS  PubMed  Google Scholar 

  14. Coussot G, Le Postollec A, Faye C, Dobrijevic M. A gold standard method for the evaluation of antibody-based materials functionality: approach to forced degradation studies. J Pharm Biomed Anal. 2018;152:17–24.

    Article  CAS  PubMed  Google Scholar 

  15. Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs. 2018;10(4):513–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fekete S, Guillarme D. Ultra-high-performance liquid chromatography for the characterization of therapeutic proteins. TrAC Trends Anal Chem. 2014;63:76–84.

    Article  CAS  Google Scholar 

  17. Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, et al. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. MAbs. 2015;7(1):167–79.

    Article  CAS  PubMed  Google Scholar 

  19. Goyon A, D’Atri V, Bobaly B, Wagner-Rousset E, Beck A, Fekete S, et al. Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – non-denaturing chromatographic techniques. J Chromatogr B. 2017;1058(February):73–84.

    Article  CAS  Google Scholar 

  20. Boyd D, Kaschak T, Yan B. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. J Chromatogr B. 2011;879(13–14):955–60.

    Article  CAS  Google Scholar 

  21. Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233–45.

    Article  CAS  PubMed  Google Scholar 

  22. Stoll DR, Maloney TD. Recent advances in two-dimensional liquid chromatography for pharmaceutical and biopharmaceutical analysis. LCGC N Am. 2017;35(9):680–7.

    CAS  Google Scholar 

  23. Wang X, Buckenmaier SSD. The growing role of two-dimensional LC in the biopharmaceutical industry. J Appl Bioanal. 2017;3(5):120–6.

    Article  CAS  Google Scholar 

  24. Luo H, Zhong W, Yang J, Zhuang P, Meng F, Caldwell J, et al. 2D-LC as an on-line desalting tool allowing peptide identification directly from MS unfriendly HPLC methods. J Pharm Biomed Anal. 2017;137:139–45.

    Article  CAS  PubMed  Google Scholar 

  25. Johnson KA, Paisley-Flango K, Tangarone BS, Porter TJ, Rouse JC. Cation exchange–HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem. 2007;360(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  26. Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, et al. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies. MAbs. 2014;6(2):327–39.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ehkirch A, Hernandez-Alba O, Colas O, Beck A, Guillarme D, Cianférani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1086(March):176–83.

    Article  CAS  Google Scholar 

  28. Ehkirch A, D’Atri V, Rouviere F, Hernandez-Alba O, Goyon A, Colas O, et al. An online four-dimensional HIC×SEC-IM×MS methodology for proof-of-concept characterization of antibody drug conjugates. Anal Chem. 2018;90(3):1578–86.

    Article  CAS  PubMed  Google Scholar 

  29. Haberger M, Leiss M, Heidenreich A-K, Pester O, Hafenmair G, Hook M, et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2016;8(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  30. Füssl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal Chem. 2018;90(7):4669–76.

    Article  CAS  PubMed  Google Scholar 

  31. Fekete S, Berky R, Fekete J, Veuthey J-L, Guillarme D. Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. J Chromatogr A. 2012;1252:90–103.

    Article  CAS  PubMed  Google Scholar 

  32. Holzmann J, Hausberger A, Rupprechter A, Toll H. Top-down MS for rapid methionine oxidation site assignment in filgrastim. Anal Bioanal Chem. 2013;405(21):6667–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Atri V, Goyon A, Bobaly B, Beck A, Fekete S, Guillarme D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. III – denaturing chromatographic techniques hyphenated to mass spectrometry. J Chromatogr B. 2018;1096:95–106.

    Article  CAS  Google Scholar 

  34. Valliere-Douglass J, Wallace A, Balland A. Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions. J Chromatogr A. 2008;1214(1–2):81–9.

    Article  CAS  PubMed  Google Scholar 

  35. Wei B, Berning K, Quan C, Zhang YT. Glycation of antibodies: modification, methods and potential effects on biological functions. MAbs. 2017;9(4):586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Teshima G, Li M-X, Danishmand R, Obi C, To R, Huang C, et al. Separation of oxidized variants of a monoclonal antibody by anion-exchange. J Chromatogr A. 2011;1218(15):2091–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A. 2014;1335:81–103.

    Article  CAS  PubMed  Google Scholar 

  38. Folzer E, Diepold K, Bomans K, Finkler C, Schmidt R, Bulau P, et al. Selective oxidation of methionine and tryptophan residues in a therapeutic IgG1 molecule. J Pharm Sci. 2015;104(9):2824–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Davy Guillarme wishes to thank the Swiss National Science Foundation for support through a fellowship to Szabolcs Fekete (31003A 159494). Jean-Luc Veuthey from the University of Geneva is also acknowledged for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy Guillarme.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duivelshof, B.L., Fekete, S., Guillarme, D. et al. A generic workflow for the characterization of therapeutic monoclonal antibodies—application to daratumumab. Anal Bioanal Chem 411, 4615–4627 (2019). https://doi.org/10.1007/s00216-018-1561-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1561-1

Keywords

Navigation