A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg2+ present in aqueous medium and its biological applications


A novel rhodamine–tryptamine conjugate–based fluorescent and chromogenic chemosensor (RTS) for detection of Hg2+ present in water was reported. After gradual addition of Hg2+ in aqueous methanol solution of RTS, a strong orange fluorescence and deep-pink coloration were observed. The probe showed high selectivity towards Hg2+ compared to other competitive metal ions. The 1:1 binding stoichiometry between RTS and Hg2+ was established by Job’s plot analysis and mass spectroscopy. Initial studies showed that the synthesized probe RTS possessed fair non-toxicity and effectively passed through cell walls of model cell systems, viz., human neuroblastoma (SHSY5Y) cells and cervical cells (HeLa) to detect intercellular Hg2+ ions, signifying its utility in biological system. The limit of detection (LOD) was found to be 2.1 nM or 0.42 ppb by fluorescence titration. Additionally, the potential relevance of synthesized chemosensor for detecting Hg2+ ions in environmental water samples has been demonstrated.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Zheng J, Yang R, Shi M, Wu C, Fang X, Li Y, et al. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem Soc Rev. 2015;44(10):3036–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Yang Z, Cao J, He Y, Yang JH, Kim T, Peng X, et al. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem Soc Rev. 2014;43(13):4563–601.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46(23):7105–23.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Domaille DW, Que EL, Chang CJ. Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol. 2008;4(3):168–75.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kolanowski JL, Liu F, New EJ. Fluorescent probes for the simultaneous detection of multiple analytes in biology. Chem Soc Rev. 2018;47(1):195–208.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108(9):3443–80.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Saleem M, Rafiq M, Hanif M. Organic material based fluorescent sensor for Hg2+: a brief review on recent development. J Fluoresc. 2017;27(1):31–58.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zarlaida F, Adlim M. Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury (II) ions: a review. Microchim Acta. 2017;184(1):45–58.

    CAS  Article  Google Scholar 

  9. 9.

    Chen G, Guo Z, Zeng G, Tang L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst. 2015;140(16):5400–43.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Culzoni MJ, De La Peña AM, Machuca A, Goicoechea HC, Babiano R. Rhodamine and BODIPY chemodosimeters and chemosensors for the detection of Hg2+, based on fluorescence enhancement effects. Anal Methods. 2013;5(1):30–49.

    CAS  Article  Google Scholar 

  11. 11.

    Bag B, Pal A. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg (II) ion. Org Biomol Chem. 2011;9(12):4467–80.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Bothra S, Upadhyay Y, Kumar R, Kumar SA, Sahoo SK. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions. Biosens Bioelectron. 2017;90:329–35.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Patil R, Fegade U, Kaur R, Sahoo SK, Singh N, Kuwar A. Highly sensitive and selective determination of Hg2+ by using 3-((2-(1H-benzo[d]imidazol-2-yl)phenylimino)methyl)benzene-1,2-diol as fluorescent chemosensor and its application in real water sample. Supramol Chem. 2015;27(7–8):527–32.

    CAS  Article  Google Scholar 

  14. 14.

    Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk for exposed populations. Environ Res. 1998;77(2):68–72.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Benoit JM, Fitzgerald WF, Damman AW. The biogeochemistry of an ombrotrophic bog: evaluation of use as an archive of atmospheric mercury deposition. Environ Res. 1998;78(2):118–33.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Baldi F, Filippelli M, Olson GJ. Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters. Microb Ecol. 1989;17(3):263–74.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Vergilio CS, Carvalho CE, Melo EJ. Mercury-induced dysfunctions in multiple organelles leading to cell death. Toxicol in Vitro. 2015;29(1):63–71.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Harada M. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol. 1995;25(1):1–24.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Zahir F, Rizwi SJ, Haq SK, Khan RH. Low dose mercury toxicity and human health. Environ Toxicol Pharmacol. 2005;20(2):351–60.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Rooney JP. The retention time of inorganic mercury in the brain-a systematic review of the evidence. Toxicol Appl Pharmacol. 2014;274(3):425–35.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H. Alzheimer disease: mercury as pathogenetic factor and apolipoprotein E as a moderator. Neuroendocrinol Lett. 2004;25(5):331–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bera K, Das AK, Nag M, Basak S. Development of a rhodamine–rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae. Anal Chem. 2014;86(5):2740–6.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Silbergeld EK, Silva IA, Nyland JF. Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol. 2005;207(2):282–92.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Zalups RK, Ahmad S. Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1. J Am Soc Nephrol. 2004;15(8):2023–31.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Zalups RK, Lash LH. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol Appl Pharmacol. 2006;214(1):88–97.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Hazra S, Balaji S, Banerjee M, Ganguly A, Ghosh NN, Chatterjee A. A PEGylated-rhodamine based sensor for “turn-on” fluorimetric and colorimetric detection of Hg2+ ions in aqueous media. Anal Methods. 2014;6(11):3784–90.

    CAS  Article  Google Scholar 

  27. 27.

    EPA U. Mercury update: impact on fish advisories. EPA Fact Sheet EPA-823-F-01-011, Office of Water, Washington, DC. 2001.

  28. 28.

    Amde M, Yin Y, Zhang D, Liu J. Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. Chem Speciat Bioavailab. 2016;28(1–4):51–65.

    CAS  Article  Google Scholar 

  29. 29.

    Asadpour-Zeynali K, Amini R. A novel voltammetric sensor for mercury (II) based on mercaptocarboxylic acid intercalated layered double hydroxide nanoparticles modified electrode. Sensors Actuators B Chem. 2017;246:961–8.

    CAS  Article  Google Scholar 

  30. 30.

    Ayranci R, Demirkol DO, Timur S, Ak M. Rhodamine-based conjugated polymers: potentiometric, colorimetric and voltammetric sensing of mercury ions in aqueous medium. Analyst. 2017;142(18):3407–15.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Cubuk S, Fırlak M, Taşci N, Yetimoğlu EK, Kahraman MV. Phosphonic acid based polymeric fluorescent sensor for Hg (II) analysis. Sensors Actuators B Chem. 2016;224:640–7.

    CAS  Article  Google Scholar 

  32. 32.

    Thakur N, Kumar SA, Kumar KA, Pandey AK, Kumar SD, Reddy AV. Development of a visual optode sensor for onsite determination of Hg (II). Sensors Actuators B Chem. 2015;211:346–53.

    CAS  Article  Google Scholar 

  33. 33.

    Gao Y, Shi Z, Long Z, Wu P, Zheng C, Hou X. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem J. 2012;103:1–4.

    CAS  Article  Google Scholar 

  34. 34.

    Beija M, Afonso CA, Martinho JM. Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev. 2009;38(8):2410–33.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Chen Z, Chen J, Pan D, Li H, Yao Y, Lyu Z, et al. “Reactive” optical sensor for Hg2+ and its application in environmental aqueous media and biological systems. Anal Bioanal Chem. 2017;409(9):2429–35.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Fang Y, Zhou Y, Li JY, Rui QQ, Yao C. Naphthalimide-rhodamine based chemosensors for colorimetric and fluorescent sensing Hg2+ through different signaling mechanisms in corresponding solvent systems. Sensors Actuators B Chem. 2015;215:350–9.

    CAS  Article  Google Scholar 

  37. 37.

    Maniyazagan M, Mariadasse R, Jeyakanthan J, Lokanath NK, Naveen S, Premkumar K, et al. Rhodamine based “turn-on” molecular switch FRET-sensor for cadmium and sulfide ions and live cell imaging study. Sensors Actuators B Chem. 2017;238:565–77.

    CAS  Article  Google Scholar 

  38. 38.

    Li D, Li CY, Qi HR, Tan KY, Li YF. Rhodamine-based chemosensor for fluorescence determination of trivalent chromium ion in living cells. Sensors Actuators B Chem. 2016;223:705–12.

    CAS  Article  Google Scholar 

  39. 39.

    Yang Z, Bai X, Ma S, Liu X, Zhao S, Yang Z. A benzoxazole functionalized fluorescent probe for selective Fe3+ detection and intracellular imaging in living cells. Anal Methods. 2017;9(1):18–22.

    CAS  Article  Google Scholar 

  40. 40.

    Qiao B, Sun S, Jiang N, Zhang S, Peng X. A ratiometric fluorescent probe for determining Pd2+ ions based on coordination. Dalton Trans. 2014;43(12):4626–30.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Kim HN, Lee MH, Kim HJ, Kim JS, Yoon J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem Soc Rev. 2008;37(8):1465–72.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Mukherjee S, Hazra S, Chowdhury S, Sarkar S, Chattopadhyay K, Pramanik A. A novel pyrrole fused coumarin based highly sensitive and selective fluorescence chemosensor for detection of Cu2+ ions and applications towards live cell imaging. J Photochem Photobiol A Chem. 2018;364:635–44.

    CAS  Article  Google Scholar 

  43. 43.

    Dhara A, Jana A, Guchhait N, Ghosh P, Kar SK. Rhodamine-based molecular clips for highly selective recognition of Al3+ ions: synthesis, crystal structure and spectroscopic properties. New J Chem. 2014;38(4):1627–34.

    CAS  Article  Google Scholar 

  44. 44.

    Dhara A, Guchhait N, Kar SK. A novel Cr3+ fluorescence turn-on probe based on rhodamine and isatin framework. J Fluoresc. 2015;25(6):1921–9.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Singharoy D, Chowdhury S, Mati SS, Ghosh S, Chattopadhyay K, Bhattacharya SC. Photoinduced electron transfer switching mechanism of a naphthalimide derivative with its solvatochromic behaviour: an experimental and theoretical study with in cell investigations. Chem Eur J. 2017;23(65):16516–24.

    CAS  PubMed  Article  Google Scholar 

Download references


S. H. thanks UGC, India, for Dr. D. S. Kothari post-doctoral fellowship (F.4-2/2006 (BSR)/CH/15-16/0226). C.B., S.C., and S.M. thank UGC, New Delhi, India, for Senior Research Fellowship (SRF). D.S. is thankful to DST India for DST Inspire Doctoral Fellowship. K.C. acknowledges DST-SERB India for financial support (DST SERB EMR/2016/000310). The authors are thankful to Mr. Arghyadeep Bhattacharyya, Prof. Nikhil Guchait (Department of Chemistry, University of Calcutta), and Tanmoy Dalui (Technical Expert, Central FACS Facility CSIR-IICB). The authors also acknowledge DST-PURSE, India, for HR-MS facility at the Department of Chemistry, University of Calcutta. The financial assistance and instrumental facilities of Centre of Advanced Study (CAS-V, UGC, New Delhi) at the Department of Chemistry, University of Calcutta, are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Animesh Pramanik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(PDF 1582 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hazra, S., Bodhak, C., Chowdhury, S. et al. A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg2+ present in aqueous medium and its biological applications. Anal Bioanal Chem 411, 1143–1157 (2019). https://doi.org/10.1007/s00216-018-1546-0

Download citation


  • Chemosensor
  • Rhodamine
  • Hg2+ detection
  • Cell imaging
  • Flow cytometry