Skip to main content
Log in

Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, carbon nanodots (CNDs) with excellent aqueous dispersibility, narrow size distribution, and oxygen-rich functional groups have been prepared via a green electrochemical method. Graphite electrodes were directly electrolyzed at ambient temperatures to form uniform CNDs in deionized water, which is free from additional oxidant/reductant. As-synthesized CNDs have been applied to coat an attenuated total reflection (ATR) waveguide enabling surface-enhanced infrared absorption (SEIRA) spectroscopic studies for detecting a variety of analytes in aqueous phase with remarkably enhanced IR band intensities. Finally, the proposed ATR-SEIRA strategy enabled quantitatively analyzing adenine in aqueous solution after optimizing the amount of CNDs, the solution pH, and potential CND aggregation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Haas J, Mizaikoff B. Advances in mid-infrared spectroscopy for chemical analysis. Annu Rev Anal Chem. 2016;9(1):45–68.

    Article  Google Scholar 

  2. Yang X, Sun Z, Low T, Hu H, Guo X, Garcia de Abajo FJ, et al. Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy. Adv Mater. 2018;30(20):e1704896.

    Article  CAS  PubMed  Google Scholar 

  3. Neubrech F, Huck C, Weber K, Pucci A, Giessen H. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117:5110–45.

    Article  CAS  PubMed  Google Scholar 

  4. Adato R, Aksu S, Altug H. Engineering mid-infrared nanoantennas for surface enhanced infrared absorption spectroscopy. Mater Today. 2015;18(8):436–46.

    Article  CAS  Google Scholar 

  5. Lopez-Lorente AI, Mizaikoff B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal Bioanal Chem. 2016;408(11):2875–89.

    Article  CAS  PubMed  Google Scholar 

  6. Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun. 2013;4:2154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu JY, Jin B, Zhao Y, Wang K, Xia XH. In situ monitoring of the DNA hybridization by attenuated total reflection surface-enhanced infrared absorption spectroscopy. Chem Commun. 2012;48(25):3052–4.

    Article  CAS  Google Scholar 

  8. Vivek JP, Berry N, Papageorgiou G, Nichols RJ, Hardwick LJ. Mechanistic insight into the superoxide induced ring opening in propylene carbonate based electrolytes using in situ surface-enhanced infrared spectroscopy. J Am Chem Soc. 2016;138(11):3745–51.

    Article  CAS  PubMed  Google Scholar 

  9. Papasizza M, Cuesta A. In situ monitoring using ATR-SEIRAS of the electrocatalytic reduction of CO2 on Au in an ionic liquid/water mixture. ACS Catal. 2018;8(7):6345–52.

    Article  CAS  Google Scholar 

  10. Rodrigo D, Limaj O, Janner D, Etezadi D, Garcia de Abajo FJ, Pruneri V, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349(6244):165–8.

    Article  CAS  PubMed  Google Scholar 

  11. Hu Y, López-Lorente ÁI, Mizaikoff B. Versatile analytical platform based on graphene-enhanced infrared attenuated Total reflection spectroscopy. ACS Photonics. 2017;4(7):1831–8.

  12. Zundel L, Manjavacas A. Spatially resolved optical sensing using graphene nanodisk arrays. ACS Photonics. 2017;4(7):1831–8.

  13. Zheng B, Yang X, Li J, Shi CF, Wang ZL, Xia XH. Graphene plasmon-enhanced IR biosensing for in situ detection of aqueous-phase molecules with an attenuated total reflection mode. Anal Chem. 2018;90:10786–94.

    Article  CAS  PubMed  Google Scholar 

  14. Xin W, Yang JM, Li C, Goorsky MS, Carlson L, De Rosa IM. Novel strategy for one-pot synthesis of gold nanoplates on carbon nanotube sheet as an effective flexible SERS substrate. ACS Appl Mater Interfaces. 2017;9(7):6246–54.

    Article  CAS  PubMed  Google Scholar 

  15. Liu D, Chen X, Hu Y, Sun T, Song Z, Zheng Y, et al. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun. 2018;9(1):193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo P, Li C, Shi G. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys Chem Chem Phys. 2012;14(20):7360–6.

    Article  CAS  PubMed  Google Scholar 

  17. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Eng. 2010;49(38):6726–44.

    Article  CAS  Google Scholar 

  18. Bai J, Sun C, Jiang X. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells. Anal Bioanal Chem. 2016;408(17):4705–14.

    Article  CAS  PubMed  Google Scholar 

  19. Roy P, Chen P-C, Periasamy AP, Chen Y-N, Chang H-T. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18(8):447–58.

    Article  CAS  Google Scholar 

  20. Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–95.

    Article  CAS  PubMed  Google Scholar 

  21. Salinas-Castillo A, Morales DP, Lapresta-Fernandez A, Ariza-Avidad M, Castillo E, Martinez-Olmos A, et al. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots. Anal Bioanal Chem. 2016;408(11):3013–20.

    Article  CAS  PubMed  Google Scholar 

  22. Fan Y, Cheng H, Zhou C, Xie X, Liu Y, Dai L, et al. Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nanoscale. 2012;4(5):1776–81.

    Article  CAS  PubMed  Google Scholar 

  23. Bhunia SK, Zeiri L, Manna J, Nandi S, Jelinek R. Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl Mater Interfaces. 2016;8(38):25637–43.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang G, Hu L, Zhu K, Yan M, Liu J, Yang J, et al. Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property. Appl Surf Sci. 2016;364:660–9.

    Article  CAS  Google Scholar 

  25. Arvand M, Ghodsi N, Zanjanchi MA. A new microplatform based on titanium dioxide nanofibers/graphene oxide nanosheets nanocomposite modified screen printed carbon electrode for electrochemical determination of adenine in the presence of guanine. Biosens Bioelectron. 2016;77:837–44.

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q, Liu Z, Hu X, Kong L, Liu S. Resonance Rayleigh scattering spectra of Cu2+−adenine-WO4(2-) system and its analytical application. Analyst. 2012;137(4):868–74.

    Article  CAS  PubMed  Google Scholar 

  27. Hou Y, Liu X, Tang X, Li T, Wu Q, Jiang Y, et al. Nucleobase chemosensor based on carbon nanodots. Talanta. 2017;173:107–12.

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Shi G, Chen X, Yao R, Chen F. A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta. 2015;182(1–2):315–22.

    Article  CAS  Google Scholar 

  29. Premasiri WR, Lee JC, Sauer-Budge A, Theberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408(17):4631–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Premasiri WR, Chen Y, Williamson PM, Bandarage DC, Pyles C, Ziegler LD. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities. Anal Bioanal Chem. 2017;409(11):3043–54.

    Article  CAS  PubMed  Google Scholar 

  31. Jha SK, Ahmed Z, Agio M, Ekinci Y, Loffler JF. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J Am Chem Soc. 2012;134(4):1966–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sato Y, Noda H, Mizutani F, Yamakata A, Osawa M. In situ surface-enhanced infrared study of hydrogen bond pairing of complementary nucleic acid bases at the electrochemical interface. Anal Chem. 2004;76(18):5564–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rodes A, Rueda M, Prieto F, Prado C, Feliu JM, Aldaz A. Adenine adsorption at single crystal and thin-film gold electrodes: an in situ infrared spectroscopy study. J Phys Chem C. 2009;113(43):18784–94.

    Article  CAS  Google Scholar 

  34. Kundu J, Neumann O, Janesko BG, Zhang D, Lal S, Barhoumi A, et al. Adenine− and adenosine monophosphate (AMP)−gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J Phys Chem C. 2009;113(32):14390–7.

    Article  CAS  Google Scholar 

  35. Rueda M, Prieto F, Rodes A, Delgado JM. In situ infrared study of adenine adsorption on gold electrodes in acid media. Electrochim Acta. 2012;82:534–42.

    Article  CAS  Google Scholar 

  36. López-Lorente ÁI, Wang P, Mizaikoff B. Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin. Microchim Acta. 2017;184(2):453–62.

    Article  CAS  Google Scholar 

  37. Papadopoulou E, Bell SEJ. Structure of adenine on metal nanoparticles: pH equilibria and formation of ag+ complexes detected by surface-enhanced Raman spectroscopy. J Phys Chem C. 2010;114(51):22644–51.

    Article  CAS  Google Scholar 

  38. Alula MT, Yang J. Photochemical decoration of silver nanoparticles on magnetic microspheres as substrates for the detection of adenine by surface-enhanced Raman scattering. Anal Chim Acta. 2014;812:114–20.

    Article  CAS  PubMed  Google Scholar 

  39. Arvand M, Sayyar Ardaki M. Poly-l-cysteine/electrospun copper oxide nanofibers-zinc oxide nanoparticles nanocomposite as sensing element of an electrochemical sensor for simultaneous determination of adenine and guanine in biological samples and evaluation of damage to dsDNA and DNA purine bases by UV radiation. Anal Chim Acta. 2017;986:25–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

YH gratefully acknowledges the Chinese Scholarship Council (CSC) for financial support. YH and BM thank the strategic partnership program funded by the DAAD “U5—Ulm University” (#57271317) for facilitating research exchange between Ulm Univ. and Shandong Univ. LC is also supported by Startup Funding of Distinguished Professorship of “1000 Talents Program” (#31370086963030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Mizaikoff.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Nanoparticles for Bioanalysis with guest editors María Carmen Blanco-López and Montserrat Rivas.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, Q., Ci, L. et al. Surface-enhanced infrared attenuated total reflection spectroscopy via carbon nanodots for small molecules in aqueous solution. Anal Bioanal Chem 411, 1863–1871 (2019). https://doi.org/10.1007/s00216-018-1521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1521-9

Keywords

Navigation