Skip to main content
Log in

Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The flexible two-dimensional (2D) nanosheet structure, high specific surface, and unique electrical properties make graphene an emerging nano-building block for molecule-responsive nanochannels. Herein, we report a novel graphene and V2O5 nanowire–based porous asymmetric membrane, which shows excellent catalytic performance and sensitive and quick response for H2O2. Poly(diallyldimethylammonium chloride)–functionalized graphene nanosheets were made into restacked lamellar film with porous structure and high anion selectivity. V2O5 nanowire, a kind of enzyme-mimetic nanomaterial, was mounted on one side of the graphene membrane through a sequential vacuum filtration method. The V2O5 nanowires on the membrane have high catalytic activities for H2O2 reduction, with the Michealis-Menten constant (KM) of 1.74 mM, better than various reported peroxidase-based nanocomposites and peroxidase mimics. This composite membrane showed quick response to H2O2 within 5 s, with good reproducibility and high operational stability. The responsive linear range was from 10 μM to 1 mM, with the detection limit of 9.5 μM. This fabrication of 2D layered nanomaterials and enzyme mimics could be extended for developing novel smart molecule-responsive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moreau CJ, Dupuis JP, Revilloud J, Arumugam K, Vivaudou M. Coupling ion channels to receptors for biomolecule sensing. Nat Nanotechnol. 2008;3:620–5.

    Article  CAS  PubMed  Google Scholar 

  2. Dekker C. Solid-state nanopores. Nat Nanotechnol. 2007;2:209–15.

    Article  CAS  PubMed  Google Scholar 

  3. Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev. 2011;40:2385–401.

    Article  CAS  PubMed  Google Scholar 

  4. Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev. 2012;112:6027–53.

    Article  CAS  PubMed  Google Scholar 

  5. Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.

    Article  CAS  PubMed  Google Scholar 

  6. Chen X, Wang Y, Zhang Y, Chen Z, Liu Y, Li Z, et al. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer–graphene electrode interface. Anal Chem. 2014;86:4278–86.

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101–5.

    Article  CAS  PubMed  Google Scholar 

  8. Yang X, Qiu L, Cheng C, Wu Y, Ma Z, Li D. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew Chem Int Ed. 2011;50:7325–466.

    Article  CAS  Google Scholar 

  9. Cheng Q, Wu M, Li M, Jiang L, Tang Z. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew Chem Int Ed. 2013;52:3750–5.

    Article  CAS  Google Scholar 

  10. Yeh CN, Raidongia K, Shao J, Yang Q, Huang J. On the origin of the stability of graphene oxide membranes in water. Nat Chem. 2015;7:166–70.

    Article  CAS  Google Scholar 

  11. Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater. 2013;25:6064–8.

    Article  CAS  PubMed  Google Scholar 

  12. Lin L, Zhang L, Wang L, Li J. Energy harvesting from enzymatic biowaste reaction through polyelectrolyte functionalized 2D nanofluidic channels. Chem Sci. 2016;7:3645–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Li Z, Weber T, Hu D, Lin C, Li J, et al. In situ live cell imaging of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem. 2013;85:6775–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Tang L, Li Z, Lin Y, Li Y. In situ simultaneous monitoring of ATP and GTP using graphene oxide nanosheets-based sensing platform in living cells. Nat Protoc. 2014;9:1944–55.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv Funct Mater. 2007;17:1958–65.

    Article  CAS  Google Scholar 

  16. Zhao Y, Zheng Y, Kong R, Xia L, Qu F. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron. 2016;75:383–8.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Qiao Y, Hao F, Zhang L, Wu S, Li Y, et al. Fabrication of biocompatible and conductive platform based on single stranded-DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem Eur J. 2010;16:8133–9.

    Article  CAS  PubMed  Google Scholar 

  18. Dong H, Nie R, Hou X, Wang P, Yue J, Jiang L. Assembly of F0F1-ATPase into solid state nanoporous membrane. Chem Commun. 2011;47:3102–4.

    Article  CAS  Google Scholar 

  19. Lin L, Yan J, Li J. Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring. Anal Chem. 2014;86:10546–51.

    Article  CAS  PubMed  Google Scholar 

  20. Lu X, Wen Z, Li J. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials. 2006;27:5740–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47:1097–105.

    Article  CAS  PubMed  Google Scholar 

  22. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Cheng G, Dong S. Direct electron transfer to cytochrome c oxidase in self-assembly monolayers on gold electrode. J Electroanal Chem. 1996;416:97–104.

    Article  CAS  Google Scholar 

  24. Luo J, Zhao D, Yang M, Qu F. Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta. 2018;185:229–34.

    Article  CAS  Google Scholar 

  25. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, et al. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater. 2011;21:501–9.

    Article  CAS  Google Scholar 

  26. Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40:4783–804.

    Article  CAS  PubMed  Google Scholar 

  27. Burks R, Hage D. Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem. 2009;395:301–13.

    Article  CAS  PubMed  Google Scholar 

  28. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339–9.

  29. Marcelo G, Tarazona MP, Saiz E. Solution properties of poly (diallyldimethylammonium chloride) (PDDA). Polymer. 2005;46:2584–94.

    Article  CAS  Google Scholar 

  30. Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett. 2004;93:035901.

    Article  CAS  PubMed  Google Scholar 

  31. Karnik R, Castelino K, Fan R, Yang P, Majumdar A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 2005;5:1638–42.

    Article  CAS  PubMed  Google Scholar 

  32. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007;7:1022–5.

    Article  CAS  PubMed  Google Scholar 

  33. Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56:658–66.

    Article  CAS  Google Scholar 

  34. Tan X, Zhang J, Tan S, Zhao D, Huang Z, Mi Y, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode. Electroanalysis. 2009;21:1514–20.

    Article  CAS  Google Scholar 

  35. Mao S, Long Y, Li W, Tu Y, Deng A. Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron. 2013;48:258–62.

    Article  CAS  PubMed  Google Scholar 

  36. Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, et al. In situ controllable growth of CoFe2O4 ferrite nanocubes on graphene for colorimetric detection of hydrogen peroxide. J Mater Chem A. 2013;1:4352–7.

    Article  CAS  Google Scholar 

  37. Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48:2540–2.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21621003, No. 21235004, No. 21327806), National Key Research and Development Program of China (No. 2016YFA0203101), and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Electronic supplementary material

ESM 1

(PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Tian, Q., Lin, L. et al. Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires. Anal Bioanal Chem 411, 4041–4048 (2019). https://doi.org/10.1007/s00216-018-1494-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1494-8

Keywords

Navigation