Scherz W, Doane MG, Dohlman CH. Tear volume in normal eyes and keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol. 1974;192:141–50.
Article
CAS
Google Scholar
Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, Roda A, et al. Tear proteomics in evaporative dry eye disease. Eye. 2010;24:1396–402.
Article
CAS
PubMed
Google Scholar
Nakatsukasa M, Sotozono C, Shimbo K, Ono N, Miyano H, Okano A, et al. Amino acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. Am J Ophthalmol. 2011;151:799–808.
Article
CAS
PubMed
Google Scholar
Jäger K, Garreis F, Posa A, Dunse M, Paulsen FP. Functional relationship between cationic amino acid transporters and beta-defensins: implications for dry skin diseases and the dry eye. Ann Anat. 2010;192:65–9.
Article
CAS
PubMed
Google Scholar
Zhou L, Beuerman RW. Tear analysis in ocular surface diseases. Prog Retin Eye Res. 2012;31:527–50.
Article
CAS
PubMed
Google Scholar
Posa A, Bräuer L, Schicht M, Garreis F, Beileke S, Paulsen F. Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat. 2013;195:137–42.
Article
CAS
PubMed
Google Scholar
Calderone L, Grimes P, Shalev M. Acute reversible cataract induced by xylazine and by ketamine-xylazine anesthesia in rats and mice. Exp Eye Res. 1986;42:331–7.
Article
CAS
PubMed
Google Scholar
VanDerMeid KR, Su SP, Krenzer KL, Ward KW, Zhang JZ. A method to extract cytokines and matrix metalloproteinases from Schirmer strips and analyze using Luminex. Mol Vis. 2011;17:1056–63.
CAS
PubMed
PubMed Central
Google Scholar
Avilov V, Zeng Q, Shippy SA. Threads for tear film collection and support in quantitative amino acid analysis. Anal Bioanal Chem. 2016;408:5309–17.
Article
CAS
PubMed
Google Scholar
Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9.
Article
CAS
PubMed
Google Scholar
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17:451–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15:473–84.
Article
CAS
PubMed
Google Scholar
Wishart DS. Quantitative metabolomics using NMR. Trends Anal Chem. 2008;27:228–37.
Article
CAS
Google Scholar
Dunn WB, Bailey NJC, Johnson HE. Measuring the metabolome: current analytical technologies. Analyst. 2005;130:606–25.
Article
CAS
PubMed
Google Scholar
Zhang A, Sun H, Wang P, Han Y, Wang X. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137:293–300.
Article
CAS
PubMed
Google Scholar
Barbas C, Moraes EP, Villaseñor A. Capillary electrophoresis as a metabolomics tool for non-targeted fingerprinting of biological samples. J Pharm Biomed Anal. 2011;55:823–31.
Article
CAS
PubMed
Google Scholar
Cabay MR, Harris JC, Shippy SA. Impact of sampling and cellular separation on amino acid determinations in Drosophila hemolymph. Anal Chem. 2018;90:4495–500.
Article
CAS
PubMed
Google Scholar
Cabay MR, McRay A, Featherstone DE, Shippy SA. Development of μ-low-flow-push-pull perfusion probes for ex vivo sampling from mouse hippocampal tissue slices. ACS Chem Neurosci. 2018;9:252–9.
Article
CAS
PubMed
Google Scholar
Bergquist J, Gilman SD, Ewing AG, Ekman R. Analysis of human cerebrospinal fluid by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem. 1994;66:3512–8.
Article
CAS
PubMed
Google Scholar
Thongkhao-On K, Kottegoda S, Pulido JS, Shippy SA. Determination of amino acids in rat vitreous perfusates by capillary electrophoresis. Electrophoresis. 2004;25:2978–84.
Article
CAS
PubMed
Google Scholar
Graves SW, Woods TA, Kim H, Nolan JP. Direct fluorescent staining and analysis of proteins on microspheres using CBQCA. Cytometry A. 2005;65:50–8.
Article
CAS
PubMed
Google Scholar
Udenfriend S, Stein S, Böhlen P, Dairman W, Leimgruber W, Weigele M. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science. 1972;178:871–2.
Article
CAS
PubMed
Google Scholar
Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol. 1981;26:84–96.
Article
PubMed
Google Scholar
Lam SM, Tong L, Duan X, Petznick A, Wenk MR, Shui G. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014;55:289–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuchell RN, Feldman JJ, Farris RL, Mandel ID. The effect of collection technique on tear composition. Invest Ophthalmol Vis Sci. 1984;25:374–7.
CAS
PubMed
Google Scholar
Saleh TA, McDermott B, Bates AK, Ewings P. Phenol red thread test vs Schirmer’s test: a comparative study. Eye. 2006;20:913–5.
Article
CAS
PubMed
Google Scholar
Rentka A, Koroskenyi K, Harsfalvi J, Szekanecz Z, Szucs G, Szodoray P, et al. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann Clin Biochem. 2017;54:521–9.
CAS
PubMed
Google Scholar
Sullivan DA, Krenzer KL, Sullivan BD, Tolls DB, Toda I, Dana MR. Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency? Invest Ophthalmol Vis Sci. 1999;40:1261–5.
CAS
PubMed
Google Scholar
Nakamachi T, Ohtaki H, Seki T, Yofu S, Kagami N, Hashimoto H, et al. PACAP suppresses dry eye signs by stimulating tear secretion. Nat Commun. 2016;7:12034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inaba T, Tanaka Y, Tamaki S, Ito T, Ntambi JM, Tsubota K. Compensatory increases in tear volume and mucin levels associated with meibomian gland dysfunction caused by stearoyl-CoA desaturase-1 deficiency. Sci Rep. 2018;8:3358.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rusciano D, Roszkowska AM, Gagliano C, Pezzino S. Free amino acids: an innovative treatment for ocular surface disease. Eur J Pharmacol. 2016;787:9–19.
Article
CAS
PubMed
Google Scholar
Venza I, Visalli M, Ceci G, Teti D. Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res. 2004;36:62–9.
Article
CAS
PubMed
Google Scholar
Mazurkiewicz-Kwilecki IM. Single and repeated air blast stress and brain histamine. Pharmacol Biochem Behav. 1980;12:35–9.
Article
CAS
PubMed
Google Scholar
Eutamene H, Theodorou V, Fioramonti J, Bueno L. Acute stress modulates the histamine content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-releasing factor release in rats. J Physiol. 2003;553:959–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura Y, Ishimaru K, Shibata S, Nakao A. Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci Rep. 2017;7:39934.
Article
CAS
PubMed
PubMed Central
Google Scholar