Skip to main content
Log in

Fast discrimination of bacteria using a filter paper–based SERS platform and PLS-DA with uncertainty estimation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Rapid and reliable identification of bacteria is an important issue in food, medical, forensic, and environmental sciences; however, conventional procedures are time-consuming and often require extensive financial and human resources. Herein, we present a label-free method for bacterial discrimination using surface-enhanced Raman spectroscopy (SERS) and partial least squares discriminant analysis (PLS-DA). Filter paper decorated with gold nanoparticles was fabricated by the dip-coating method and it was utilized as a flexible and highly efficient SERS substrate. Suspensions of bacterial samples from three genera and six species were directly deposited on the filter paper–based SERS substrates before measurements. PLS-DA was successfully employed as a multivariate supervised model to classify and identify bacteria with efficiency, sensitivity, and specificity rates of 100% for all test samples. Variable importance in projection was associated with the presence/absence of some purine metabolites, whereas confidence intervals for each sample in the PLS-DA model were calculated using a resampling bootstrap procedure. Additionally, a potential new species of bacteria was analyzed by the proposed method and the result was in agreement with that obtained via 16S rRNA gene sequence analysis, thereby indicating that the SERS/PLS-DA approach has the potential to be a valuable tool for the discovery of novel bacteria.

This paper describes the discrimination of bacteria at the genus and species levels, after minimal sample preparation, using paper-based SERS substrates and PLS-DA with uncertainty estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45:2761–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woo PCY, Lau SKP, Teng JLL, Tse H, Yuen K-Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect. 2008;14:908–34.

    Article  CAS  PubMed  Google Scholar 

  3. Mariey L, Signolle JP, Amiel C, Travert J. Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc. 2001;26:151–9.

    Article  CAS  Google Scholar 

  4. Stöckel S, Kirchhoff J, Neugebauer U, Rösch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47:89–109.

    Article  CAS  Google Scholar 

  5. Kneipp K. Surface-enhanced Raman scattering. Phys Today. 2007;60:40–6.

    Article  CAS  Google Scholar 

  6. Vo-Dinh T. Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends Anal Chem. 1998;17:557–82.

    Article  CAS  Google Scholar 

  7. Jahn M, Patze S, Hidi IJ, Knipper R, Radu AI, Mühlig A, et al. Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst. 2016;141:756–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ngo YH, Li D, Simon GP, Garnier G. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir. 2012;28:8782–90.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Wang J, Wang B, Li Z, Huang H, Li C, et al. Paper-based plasmonic platform for sensitive, noninvasive, and rapid cancer screening. Biosens Bioelectron. 2014;54:128–34.

    Article  CAS  PubMed  Google Scholar 

  10. Villa JEL, Poppi RJ. A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst. 2016;141:1966–72.

    Article  CAS  PubMed  Google Scholar 

  11. Villa JEL, Pasquini C, Poppi RJ. Coupling of the ring-oven-based preconcentration technique and surface-enhanced Raman spectroscopy: application for the determination of purine bases in DNA. Anal Chim Acta. 2017;991:95–103.

    Article  CAS  PubMed  Google Scholar 

  12. Villa JEL, dos Santos DP, Poppi RJ. Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta. 2016;183:2745–52.

    Article  CAS  Google Scholar 

  13. Lee CH, Tian L, Singamaneni S. Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces. 2010;2:3429–35.

    Article  CAS  PubMed  Google Scholar 

  14. Sengupta A, Laucks ML, Davis EJ. Surface-enhanced Raman spectroscopy of bacteria and pollen. Appl Spectrosc. 2005;59:1016–23.

    Article  CAS  PubMed  Google Scholar 

  15. Walter A, März A, Schumacher W, Rösch P, Popp J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip. 2011;11:1013–21.

    Article  CAS  PubMed  Google Scholar 

  16. Botelho BG, Reis N, Oliveira LS, Sena MM. Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA. Food Chem. 2015;181:31–7.

    Article  CAS  PubMed  Google Scholar 

  17. da Silva MPF, Brito LR, Honorato FA, Paim APS, Pasquini C, Pimentel MF. Classification of gasoline as with or without dispersant and detergent additives using infrared spectroscopy and multivariate classification. Fuel. 2014;116:151–7.

    Article  CAS  Google Scholar 

  18. Hoehse M, Paul A, Gornushkin I, Panne U. Multivariate classification of pigments and inks using combined Raman spectroscopy and LIBS. Anal Bioanal Chem. 2012;402:1443–50.

    Article  CAS  PubMed  Google Scholar 

  19. Araghipour N, Colineau J, Koot A, Akkermans W, Rojas JMM, Beauchamp J, et al. Geographical origin classification of olive oils by PTR-MS. Food Chem. 2008;108:374–83.

    Article  CAS  Google Scholar 

  20. Preisner O, Lopes JA, Menezes JC. Uncertainty assessment in FT-IR spectroscopy based bacteria classification models. Chemom Intell Lab Syst. 2008;94:33–42.

    Article  CAS  Google Scholar 

  21. Almeida MR, Fidelis CHV, Barata LES, Poppi RJ. Classification of Amazonian rosewood essential oil by Raman spectroscopy and PLS-DA with reliability estimation. Talanta. 2013;117:305–11.

    Article  CAS  PubMed  Google Scholar 

  22. Almeida MR, Correa DN, Rocha WFC, Scafi FJO, Poppi RJ. Discrimination between authentic and counterfeit banknotes using Raman spectroscopy and PLS-DA with uncertainty estimation. Microchem J. 2013;109:170–7.

    Article  CAS  Google Scholar 

  23. Ballabio D, Consonni V. Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods. 2013;5:3790–8.

    Article  CAS  Google Scholar 

  24. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 2001;58:109–30.

    Article  CAS  Google Scholar 

  25. Pérez NF, Ferré J, Boqué R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemom Intell Lab Syst. 2009;95:122–8.

    Article  CAS  Google Scholar 

  26. Pereira AC, Reis MS, Saraiva PM, Marques JC. Madeira wine ageing prediction based on different analytical techniques: UV–vis, GC-MS, HPLC-DAD. Chemom Intell Lab Syst. 2011;105:43–55.

    Article  CAS  Google Scholar 

  27. Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.

    Article  Google Scholar 

  28. Lane DJ. 16S/23S rRNA sequencing. In: Goodfellow M, Stackebrant E, editors. Nucleic acid techniques in bacterial systematics. Chichester: Wiley; 1991. p. 115–47.

    Google Scholar 

  29. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.

    CAS  Google Scholar 

  30. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408:4631–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Biavati B, Mattarelli P, Phylum XXVI. Actinobacteria phyl. nov. In: Goodfellow M, Kampfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB, editors. Bergey’s manual of systematic bacteriology. New York: Springer; 2012. p. 419–35.

    Google Scholar 

  34. Kanehisa M, Goto S. KEEG purine metabolism pathways. 2000. https://www.genome.jp/kegg/pathway/map/map00230.html. Accessed 20 Oct 2018.

Download references

Funding

This study was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process 303994/2017-7 and 140377/2015-8) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronei J. Poppi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa, J.E.L., Quiñones, N.R., Fantinatti-Garboggini, F. et al. Fast discrimination of bacteria using a filter paper–based SERS platform and PLS-DA with uncertainty estimation. Anal Bioanal Chem 411, 705–713 (2019). https://doi.org/10.1007/s00216-018-1485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1485-9

Keywords

Navigation