Skip to main content
Log in

Quantification of DEET and neonicotinoid pesticide biomarkers in human urine by online solid-phase extraction high-performance liquid chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Neonicotinoid insecticides are widely used replacements for organophosphate and carbamate insecticides, but the extent of human exposure is largely unknown. On the other hand, based on urinary concentrations of DEET metabolites, human exposure to N,N-diethyl-m-toluamide (DEET) appears to be widespread. We developed a fast online solid-phase extraction high-performance liquid chromatography-isotope dilution tandem mass spectrometry (HPLC-MS/MS) method to measure in 200 μL of human urine the concentrations of six neonicotinoid biomarkers (acetamiprid, N-desmethyl-acetamiprid, clothianidin, imidacloprid, 5-hydroxy-imidacloprid, thiacloprid), and two DEET biomarkers (3-diethyl-carbamoyl benzoic acid, 3-ethyl-carbamoyl benzoic acid). Limits of detection ranged from 0.01 to 0.1 μg/L, depending on the biomarker. Accuracy ranged from 91 to 116% and precision ranged from 3.7 to 10 %RSD. The presented method can be used to increase our understanding of exposure to neonicotinoid insecticides and DEET, and to evaluate the potential health effects from such exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Douglas MR, Tooker JF. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest min U.S. field crops. Environ Sci Technol. 2015;49(8):5088–97. https://doi.org/10.1021/es506141g.

    Article  CAS  PubMed  Google Scholar 

  2. Goulson D. REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol. 2013;50(4):977–87. https://doi.org/10.1111/1365-2664.12111.

    Article  Google Scholar 

  3. Jeschke P, Nauen R, Schindler M, Elbert A. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 2011;59(7):2897–908. https://doi.org/10.1021/jf101303g.

    Article  CAS  Google Scholar 

  4. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 2015;22(1):5–34. https://doi.org/10.1007/s11356-014-3470-y.

    Article  CAS  PubMed  Google Scholar 

  5. Tomizawa M, Casida JE. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu Rev Pharmacol Toxicol. 2005;45(1):247–68. https://doi.org/10.1146/annurev.pharmtox.45.120403.095930.

    Article  CAS  PubMed  Google Scholar 

  6. Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic Biochem Physiol. 2015;121:78–87. https://doi.org/10.1016/j.pestbp.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol Sci. 2001;22(11):573–80. https://doi.org/10.1016/S0165-6147(00)01820-4.

    Article  CAS  PubMed  Google Scholar 

  8. Kasiotis KM, Machera K. Neonicotinoids and their metabolites in human biomonitoring: a review. Hellenic Plant Protect J. 2015;8(2):33–45. https://doi.org/10.1515/hppj-2015-0006.

    Article  Google Scholar 

  9. Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. J Agric Food Chem. 2011;59(7):2923–31. https://doi.org/10.1021/jf102438c.

    Article  CAS  PubMed  Google Scholar 

  10. Chen M, Tao L, McLean J, Lu C. Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures. J Agric Food Chem. 2014;62(26):6082–90. https://doi.org/10.1021/jf501397m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hladik ML, Main AR, Goulson D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ Sci Technol. 2018. https://doi.org/10.1021/acs.est.7b06388.

  12. Cimino AM, Boyles AL, Thayer KA, Perry MJ. Effects of neonicotinoid pesticide exposure on human health: a systematic review. Environ Health Perspect. 2017;125(2):155–62. https://doi.org/10.1289/ehp515.

    Article  CAS  PubMed  Google Scholar 

  13. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, et al. Colony collapse disorder: a descriptive study. PLoS One. 2009;4(8):e6481. https://doi.org/10.1371/journal.pone.0006481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hladik ML, Kolpin DW, Kuivila KM. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut. 2014;193:189–96. https://doi.org/10.1016/j.envpol.2014.06.033.

    Article  CAS  PubMed  Google Scholar 

  15. Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014;511:341. https://doi.org/10.1038/nature13531. Accessed 13 Aug 2013

  16. Han W, Tian Y, Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere. 2018;192:59–65. https://doi.org/10.1016/j.chemosphere.2017.10.149.

    Article  CAS  PubMed  Google Scholar 

  17. Dick RA, Kanne DB, Casida JE. Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol. 2006;19(1):38–43. https://doi.org/10.1021/tx050230x.

    Article  CAS  PubMed  Google Scholar 

  18. Shi X, Dick RA, Ford KA, Casida JE. Enzymes and inhibitors in neonicotinoid insecticide metabolism. J Agric Food Chem. 2009;57(11):4861–6. https://doi.org/10.1021/jf900250f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schulz-Jander DA, Casida JE. Imidacloprid insecticide metabolism: human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicol Lett. 2002;132(1):65–70. https://doi.org/10.1016/S0378-4274(02)00068-1.

    Article  CAS  PubMed  Google Scholar 

  20. Ford KA, Casida JE. Chloropyridinyl neonicotinoid insecticides: diverse molecular substituents contribute to facile metabolism in mice. Chem Res Toxicol. 2006;19(7):944–51. https://doi.org/10.1021/tx0600696.

    Article  CAS  PubMed  Google Scholar 

  21. Ford KA, Casida JE. Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem Res Toxicol. 2006;19(11):1549–56. https://doi.org/10.1021/tx0601859.

    Article  CAS  PubMed  Google Scholar 

  22. Marfo JT, Fujioka K, Ikenaka Y, Nakayama SM, Mizukawa H, Aoyama Y, et al. Relationship between urinary N-desmethyl-acetamiprid and typical symptoms including neurological findings: a prevalence case-control study. PLoS One. 2015;10(11):e0142172. https://doi.org/10.1371/journal.pone.0142172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taira K, Fujioka K, Aoyama Y. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry. PLoS One. 2013;8(11):e80332. https://doi.org/10.1371/journal.pone.0080332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nomura H, Ueyama J, Kondo T, Saito I, Murata K, Iwata T, et al. Quantitation of neonicotinoid metabolites in human urine using GC-MS. J Chromatogr B. 2013;941:109–15. https://doi.org/10.1016/j.jchromb.2013.10.012.

    Article  CAS  Google Scholar 

  25. Uroz FJ, Arrebola FJ, Egea-Gonzalez FJ, Martinez-Vidal JL. Monitoring of 6-chloronicotinic acid in human urine by gas chromatography-tandem mass spectrometry as indicator of exposure to the pesticide imidacloprid. Analyst. 2001;126(8):1355–8.

    Article  CAS  Google Scholar 

  26. Harada KH, Tanaka K, Sakamoto H, Imanaka M, Niisoe T, Hitomi T, et al. Biological monitoring of human exposure to neonicotinoids using urine samples, and neonicotinoid excretion kinetics. PLoS One. 2016;11(1):e0146335. https://doi.org/10.1371/journal.pone.0146335.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ueyama J, Nomura H, Kondo T, Saito I, Ito Y, Osaka A, et al. Biological monitoring method for urinary neonicotinoid insecticides using LC-MS/MS and its application to Japanese adults. J Occup Health. 2014;56(6):461–8. https://doi.org/10.1539/joh.14-0077-OA.

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Liu T, Liu F, Zhang J, Wu Y, Sun H. Occurrence and profile characteristics of the pesticide imidacloprid, preservative parabens, and their metabolites in human urine from rural and urban China. Environ Sci Technol. 2015;49(24):14633–40. https://doi.org/10.1021/acs.est.5b04037.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamuro T, Ohta H, Aoyama M, Watanabe D. Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2014;969:85–94. https://doi.org/10.1016/j.jchromb.2014.06.008.

    Article  CAS  Google Scholar 

  30. Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: a review. Environ Pollut. 2018;236:71–81. https://doi.org/10.1016/j.envpol.2017.12.101.

    Article  CAS  PubMed  Google Scholar 

  31. López-García M, Romero-González R, Lacasaña M, Garrido Frenich A. Semiautomated determination of neonicotinoids and characteristic metabolite in urine samples using TurboFlow™ coupled to ultra high performance liquid chromatography coupled to Orbitrap analyzer. J Pharm Biomed Anal. 2017;146:378–86. https://doi.org/10.1016/j.jpba.2017.08.026.

    Article  CAS  PubMed  Google Scholar 

  32. CDC (2017) Protection against mosquitoes, ticks, & other Arthropods, Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases https://wwwnc.cdc.gov/travel/yellowbook/2018/the-pre-travel-consultation/protection-against-mosquitoes-ticks-other-arthropods. Accessed 5 July 2018.

  33. EPA (2017) DEET. https://www.epa.gov/insect-repellents/deet. Accessed 5 July 2018.

  34. EPA (2017) Find the insect repellent that is right for you. https://www.epa.gov/insect-repellents/find-insect-repellent-right-you. Accessed 5 July 2018.

  35. Calafat AM, Baker SE, Wong LY, Bishop AM, Morales AP, Valentin-Blasini L. Novel exposure biomarkers of N,N-diethyl-m-toluamide (DEET): data from the 2007-2010 National Health and Nutrition Examination Survey. Environ Int. 2016;92-93:398–404. https://doi.org/10.1016/j.envint.2016.04.021.

    Article  CAS  PubMed  Google Scholar 

  36. ATSDR (2017) Toxicological profile for DEET (N,N-diethyl-meta-toluamide). U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/ToxProfiles/tp185.pdf. Accessed 13 Aug 2018

  37. Caudill SP, Schleicher RL, Pirkle JL. Multi-rule quality control for the age-related eye disease study. Stat Med. 2008;27(20):4094–106. https://doi.org/10.1002/sim.3222.

    Article  PubMed  Google Scholar 

  38. FDA (2018) Bionalytical method validation-guidance for industry. May 2018 edn. Food and Drug Administration Center for Drug Evaluation and Research,

  39. Bader MBD, Gæen T, Schaller KH, Scherer G, Angerer J. Reliability criteria for analytical methods [Biomonitoring Methods, 2010]. In: GmbH&Co W-VV, editor. The MAK-Collection for occupational health and safety, vol 12, Biomonitoring Methods., vol Part IV; 2010. https://doi.org/10.1002/3527600418.bireliabe0012.

    Chapter  Google Scholar 

  40. Taylor J. Quality assurance of chemical measurements. 1st ed: CRC Press; 1987.

  41. Matuszewski BK. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830(2):293–300. https://doi.org/10.1016/j.jchromb.2005.11.009.

    Article  CAS  PubMed  Google Scholar 

  42. Kuklenyik P, Baker SE, Bishop AM, Morales AP, Calafat AM. On-line solid phase extraction-high performance liquid chromatography-isotope dilution-tandem mass spectrometry approach to quantify N,N-diethyl-m-toluamide and oxidative metabolites in urine. Anal Chim Acta. 2013;787:267–73. https://doi.org/10.1016/j.aca.2013.05.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Osaka A, Ueyama J, Kondo T, Nomura H, Sugiura Y, Saito I, et al. Exposure characterization of three major insecticide lines in urine of young children in Japan—neonicotinoids, organophosphates, and pyrethroids. Environ Res. 2016;147:89–96. https://doi.org/10.1016/j.envres.2016.01.028.

    Article  CAS  PubMed  Google Scholar 

  44. CDC (2018) Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, March 2018 Centers for Disease Control and Prevention; National Center for Environmental Health; Division of Laboratory Sciences. https://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Volume1_Mar2018.pdf. . Accessed July 5, 2018.

Download references

Acknowledgements

We thank Charlie Chambers for technical assistance and Dr. Peter Kuklenyik for the diagram in the supplemental information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ospina.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, S.E., Serafim, A.B., Morales-Agudelo, P. et al. Quantification of DEET and neonicotinoid pesticide biomarkers in human urine by online solid-phase extraction high-performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 411, 669–678 (2019). https://doi.org/10.1007/s00216-018-1481-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1481-0

Keywords

Navigation