Characterization of air contaminants emitted during laser cutting of carbon fiber-reinforced composite materials

Abstract

The emission of ultrafine carbonaceous particles during the laser cutting of fiber-reinforced polymer (CFRP) composite materials was investigated. The study was based on characterization of air contaminants emitted during laser cutting of an epoxy-based CFRP material with respect to particle size distribution, particle morphology, and chemical composition. Results indicate that about 90% of the total particulate mass is present as fine particulate matter with an aerodynamic cut-off diameter of 0.25 μm, and considerable amounts of ultrafine carbonaceous particulate matter dominated by organic carbon are emitted during high-power laser cutting of CFRP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Prashanth S, Subbaya KM, Nithin K, Sachhidananda S. Fiber reinforced composites - a review. J Material Sci Eng. 2017;6(3):1000341.

    Google Scholar 

  2. 2.

    OSHA technical manual. Section III. Chapter 1:Polymer matrix materials: advanced composites. (https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_1.html).

  3. 3.

    Patel P, Gohil P, Rajpurohit S. Laser machining of polymer matrix composites: scope, limitation and application. IJETT. 2013;4(6):2391–9.

    Google Scholar 

  4. 4.

    Haferkamp H, Alvensleben F, Seebaum D, Goede M, Puester T. Air contaminants generated during laser processing of organic materials and protective measures. J Laser Appl. 1998;10(3):109–13.

    Article  CAS  Google Scholar 

  5. 5.

    Walter J, Hustedt M, Staehr R, Kaierle S, Jaeschke P, Suttmann O, et al. Laser cutting of carbon fiber reinforced plastics-investigation of hazardous process emissions. Phys Procedia. 2014;56:1153–64.

    Article  CAS  Google Scholar 

  6. 6.

    Walter J, Brodesser A, Hustedt M, Bluemel S, Jaeschke P, Kaierle S. Laser processing of carbon fiber reinforced plastics-release of carbon fiber segments during short-pulsed laser processing of CFRP. Phys Procedia. 2016;83:1021–30.

    Article  CAS  Google Scholar 

  7. 7.

    Mucha P, Weber R, Speker N, Berger P, Sommer B, Graf T. Calibrated heat flow model for determining the heat conduction losses in laser cutting of CFRP. Phys Procedia. 2014;56:1208–17.

    Article  CAS  Google Scholar 

  8. 8.

    Beyler CL, Hirschler MM, Chapter 7: Thermal decomposition of polymers. SFPE handbook of fire protection engineering 3rdEdn. Ed. P.J. DiNenno. National Fire Protection Association. Quincy. MA. USA. 2001:1–100.

  9. 9.

    Li ZL, Chu PL, Zheng HY, Lim GC, Li L, Marimuthu S, et al. Laser machining of carbon fibre-reinforced plastic composites advances in laser materials processing: Woodhead Publishing; 2010. p. 136–77.

  10. 10.

    Solvay SA, Brussels. Belgium. Safety data sheet no.0042443.

  11. 11.

    Misra C, Singh M, Shen S, Sioutas C, Hall PM. Development and evaluation of a personal cascade impactor sampler (PCIP). Aerosol Sci. 2002;33:1027–47.

    Article  CAS  Google Scholar 

  12. 12.

    Miller A, Frey G, King G, Sunderman C. A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol. 2010;44:417–27.

    Article  CAS  Google Scholar 

  13. 13.

    National Institute of Occupational Safety and Health Method 5040: diesel particulate matter. Cincinnati. USA. 2003.

  14. 14.

    Krestinin AV. Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust Flames. 2000;121:513–24.

    Article  CAS  Google Scholar 

  15. 15.

    Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci. 2003;34:1347–70.

    Article  CAS  Google Scholar 

  16. 16.

    Weinbruch S, Benker N, Kandler K, Ebert M, Ellingsen DG, Berlinger B, et al. Morphology chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters. Anal Bioanal Chem. 2016;408:1151–8.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Current Intelligence Bulletin 65: occupational exposure to carbon nanotubes and nanofibers. National Institute of Occupational Safety and Health. USA. 2013. (http://www.cdcgov/niosh).

  18. 18.

    Beyler C, Hirschler H. SFPE handbook of fire protection engineering. Quiney. MAEdition edn 2002;7:110–131.

  19. 19.

    Luda MP, Balabanovich AI, Camino G. Thermal decomposition of fire retardant brominated epoxy resins. J Anal Appl Pyrolysis. 2002;65:25–40.

    Article  CAS  Google Scholar 

  20. 20.

    Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S. Kinetic analysis of thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J Anal Appl Pyrolysis. 2017;126:14–21.

    Article  CAS  Google Scholar 

  21. 21.

    Xiong X, Zhou L, Ren R, Liu S, Chen P. The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polym Test. 2018;68:46–52.

    Article  CAS  Google Scholar 

  22. 22.

    Trasser FJ, Emmrich M, Kock H, Levsen K, Priess B, Sollinger S. Organic emissions during laser cutting of fibre-reinforced plastics. Staub Reinhaltung der Luft. 1991;51(10):365–72.

    Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Education and Science of the Russian Federation (research grants № 14.Z50.31.0023 and 9.3236.2017/4.6) and Federal Target Program 1.3 (agreement № 14.578.21.0245).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleksey Noskov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noskov, A., Thomassen, Y., Berlinger, B. et al. Characterization of air contaminants emitted during laser cutting of carbon fiber-reinforced composite materials. Anal Bioanal Chem 411, 305–313 (2019). https://doi.org/10.1007/s00216-018-1469-9

Download citation

Keywords

  • Nanoparticles/nanotechnology
  • Aerosols/particulates
  • Laser cutting
  • Carbon fiber-reinforced polymer composite materials