Spatial and molecular changes of mouse brain metabolism in response to immunomodulatory treatment with teriflunomide as visualized by MALDI-MSI

Abstract

Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease of the central nervous system (CNS). One of the most promising recent medications for MS is teriflunomide. Its primary mechanism of action is linked to effects on the peripheral immune system by inhibiting dihydroorotate dehydrogenase (DHODH)-catalyzed de novo pyrimidine synthesis and reducing the expansion of lymphocytes in the peripheral immune system. Some in vitro studies suggested, however, that it can also have a direct effect on the CNS compartment. This potential alternative mode of action depends on the drug’s capacity to traverse the blood-brain barrier (BBB) and to exert an effect on the complex network of brain biochemical pathways. In this paper, we demonstrate the application of high-resolution/high-accuracy matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry for molecular imaging of the mouse brain coronal sections from animals treated with teriflunomide. Specifically, in order to assess the effect of teriflunomide on the mouse CNS compartment, we investigated the feasibility of teriflunomide to traverse the BBB. Secondly, we systematically evaluated the spatial and semi-quantitative brain metabolic profiles of 24 different endogenous compounds after 4-day teriflunomide administration. Even though the drug was not detected in the examined cerebral sections (despite the high detection sensitivity of the developed method), in-depth study of the endogenous metabolic compartment revealed noticeable alterations as a result of teriflunomide administration compared to the control animals. The observed differences, particularly for purine and pyrimidine nucleotides as well as for glutathione and carbohydrate metabolism intermediates, shed some light on the potential impact of teriflunomide on the mouse brain metabolic networks.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15:545–58. https://doi.org/10.1038/nri3871.

    Article  CAS  Google Scholar 

  2. 2.

    Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22:3–13. https://doi.org/10.1111/ene.12798.

    Article  PubMed  Google Scholar 

  3. 3.

    Trapp BD, Nave K-A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69. https://doi.org/10.1146/annurev.neuro.30.051606.094313.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Stys PK, Zamponi GW, Van MJ, Geurts JJG. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13:507–14.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Kipp M, van der Valk P, Amor S. Pathology of multiple sclerosis. CNS Neurol Disord - Drug Targets. 2012;11:506–17. https://doi.org/10.2174/187152712801661248.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    English C, Aloi JJ. New FDA-approved disease-modifying therapies for multiple sclerosis. Clin Ther. 2015;37:691–715. https://doi.org/10.1016/j.clinthera.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Killestein J, Rudick RA, Polman CH. Oral treatment for multiple sclerosis. Lancet Neurol. 2011;10:1026–34. https://doi.org/10.1016/S1474-4422(11)70228-9.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Freedman MS, Montalban X, Miller AE, Dive-Pouletty C, Hass S, Thangavelu K, et al. Comparing outcomes from clinical studies of oral disease-modifying therapies (dimethyl fumarate, fingolimod, and teriflunomide) in relapsing MS: assessing absolute differences using a number needed to treat analysis. Mult Scler Relat Disord. 2016;10:204–12. https://doi.org/10.1016/j.msard.2016.10.010.

    Article  PubMed  Google Scholar 

  9. 9.

    Mladenovic V, Domljan Z, Rozman B, Jajic I, Mihajlovic D, Dordevic J, et al. Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Arthritis Rheum. 1995;38:1595–603. https://doi.org/10.1002/art.1780381111.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Ringheim GE, Lee L, Laws-Ricker L, Delohery T, Liu L, Zhang D, et al. Teriflunomide attenuates immunopathological changes in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. Front Neurol. 2013;4:1–12. https://doi.org/10.3389/fneur.2013.00169.

    Article  Google Scholar 

  11. 11.

    Wiese MD, Rowland A, Polasek TM, Sorich MJ, O’Doherty C. Pharmacokinetic evaluation of teriflunomide for the treatment of multiple sclerosis. Expert Opin Drug Metab Toxicol. 2013;9:1025–35. https://doi.org/10.1517/17425255.2013.800483.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Claussen MC, Korn T. Immune mechanisms of new therapeutic strategies in MS—teriflunomide. Clin Immunol. 2012;142:49–56. https://doi.org/10.1016/j.clim.2011.02.011.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs. 2014;74:659–74. https://doi.org/10.1007/s40265-014-0212-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    González-Alvaro I, Ortiz AM, Domínguez-Jiménez C, Aragón-Bodi A, Díaz Sánchez B, Sánchez-Madrid F. Inhibition of tumour necrosis factor and IL-17 production by leflunomide involves the JAK/STAT pathway. Ann Rheum Dis. 2009;68:1644–50. https://doi.org/10.1136/ard.2008.096743.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Hamilton LC, Vojnovic I, Warner TD. A771726, the active metabolite of leflunomide, directly inhibits the activity of cyclo-oxygenase-2 in vitro and in vivo in a substrate-sensitive manner. Br J Pharmacol. 1999;127:1589–96. https://doi.org/10.1038/sj.bjp.0702708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol. 1999;162:2095–102. https://doi.org/10.4049/jimmunol.164.10.5156.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Healy LM, Michell-Robinson MA, Antel JP. Regulation of human glia by multiple sclerosis disease modifying therapies. Semin Immunopathol. 2015;37:639–49. https://doi.org/10.1007/s00281-015-0514-4.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Kaddurah-Daouk R, Krishnan KRR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology. 2009;34:173–86. https://doi.org/10.1038/npp.2008.174.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology. 2014;39:24–33. https://doi.org/10.1038/npp.2013.167.

    Article  PubMed  Google Scholar 

  20. 20.

    Ivanisevic J, Siuzdak G. The role of metabolomics in brain metabolism research. J NeuroImmune Pharmacol. 2015;10:391–5. https://doi.org/10.1007/s11481-015-9621-1.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tumani H, Hartung HP, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, et al. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis. 2009;35:117–27. https://doi.org/10.1016/j.nbd.2009.04.010.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: insight into biomarkers and pathology. J Neuroimmunol. 2015;279:25–32. https://doi.org/10.1016/j.jneuroim.2015.01.001.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Noga MJ, Dane A, Shi S, Attali A, van Aken H, Suidgeest E, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8:253–63. https://doi.org/10.1007/s11306-011-0306-3.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Coulier L, Muilwijk B, Bijlsma S, Noga M, Tienstra M, Attali A, et al. Metabolite profiling of small cerebrospinal fluid sample volumes with gas chromatography-mass spectrometry: application to a rat model of multiple sclerosis. Metabolomics. 2013;9:78–87. https://doi.org/10.1007/s11306-012-0428-2.

    Article  CAS  Google Scholar 

  25. 25.

    Pieragostino D, D’Alessandro M, di Ioia M, Rossi C, Zucchelli M, Urbani A, et al. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol BioSyst. 2015;11:1563–72. https://doi.org/10.1039/C4MB00700J.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Kantae V, Krekels EHJ, Esdonk MJV, Lindenburg P, Harms AC, Knibbe CAJ, et al. Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: towards personalized drug therapy. Metabolomics. 2017;13:1–11. https://doi.org/10.1007/s11306-016-1143-1.

    Article  CAS  Google Scholar 

  27. 27.

    Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016;15:473–84. https://doi.org/10.1038/nrd.2016.32.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Miura D, Fujimura Y, Wariishi H. In situ metabolomic mass spectrometry imaging: recent advances and difficulties. J Proteome. 2012;75:5052–60. https://doi.org/10.1016/j.jprot.2012.02.011.

    Article  CAS  Google Scholar 

  29. 29.

    Dekker TJA, Jones EA, Corver WE, van Zeijl RJM, Deelder AM, Tollenaar RAEM, et al. Towards imaging metabolic pathways in tissues. Anal Bioanal Chem. 2015;407:2167–76. https://doi.org/10.1007/s00216-014-8305-7.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Palmer A, Trede D, Alexandrov T. Where imaging mass spectrometry stands: here are the numbers. Metabolomics. 2016;12:107. https://doi.org/10.1007/s11306-016-1047-0.

    Article  CAS  Google Scholar 

  31. 31.

    Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113:2309–42. https://doi.org/10.1021/cr3004295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Spengler B. Mass spectrometry imaging of biomolecular information. Anal Chem. 2015;87:64–82. https://doi.org/10.1021/ac504543v.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Ellis SR, Bruinen AL, Heeren RMA. A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem. 2014;406:1275–89. https://doi.org/10.1007/s00216-013-7478-9.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Rzagalinski I, Volmer DA. Quantification of low molecular weight compounds by MALDI imaging mass spectrometry—a tutorial review. Biochim Biophys Acta - Proteins Proteomics. 2017;1865:726–39. https://doi.org/10.1016/j.bbapap.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Shariatgorji M, Svenningsson P, Andrén PE. Mass spectrometry imaging, an emerging technology in neuropsychopharmacology. Neuropsychopharmacology. 2014;39:34–9. https://doi.org/10.1038/npp.2013.215.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Hanrieder J, Phan NTN, Kurczy ME, Ewing AG. Imaging mass spectrometry in neuroscience. ACS Chem Neurosci. 2013;4:666–79. https://doi.org/10.1021/cn400053c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Kaya I, Brinet D, Michno W, Syvänen S, Sehlin D, Zetterberg H, et al. Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer’s disease mice (tgArcSwe) using MALDI imaging mass spectrometry. ACS Chem Neurosci. 2017;8:347–55. https://doi.org/10.1021/acschemneuro.6b00391.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Kaya I, Brinet D, Michno W, Başkurt M, Zetterberg H, Blenow K, et al. Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in Aβ plaque pathology in Alzheimer’s disease. ACS Chem Neurosci. 2017;8:2778–90. https://doi.org/10.1021/acschemneuro.7b00314.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Sparvero LJ, Amoscato AA, Kochanek PM, Pitt BR, Kagan VE, Bayär H. Mass-spectrometry based oxidative lipidomics and lipid imaging: applications in traumatic brain injury. J Neurochem. 2010;115:1322–36. https://doi.org/10.1111/j.1471-4159.2010.07055.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Barbacci DC, Roux A, Muller L, Jackson SN, Post J, Baldwin K, et al. Mass spectrometric imaging of ceramide biomarkers tracks therapeutic response in traumatic brain injury. ACS Chem Neurosci. 2017;8:2266–74. https://doi.org/10.1021/acschemneuro.7b00189.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Hanrieder J, Ekegren T, Andersson M, Bergquist J. MALDI imaging of post-mortem human spinal cord in amyotrophic lateral sclerosis. J Neurochem. 2013;124:695–707. https://doi.org/10.1111/jnc.12019.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Hanrieder J, Ewing AG. Spatial elucidation of spinal cord lipid- and metabolite- regulations in amyotrophic lateral sclerosis. Sci Rep. 2014;4:1–7. https://doi.org/10.1038/srep05266.

    CAS  Article  Google Scholar 

  43. 43.

    Bergholt MS, Serio A, McKenzie JS, Boyd A, Soares RF, Tillner J, et al. Correlated heterospectral lipidomics for biomolecular profiling of remyelination in multiple sclerosis. ACS Cent Sci. 2018;4:39–51. https://doi.org/10.1021/acscentsci.7b00367.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Sun N, Fernandez IE, Wei M, Wu Y, Aichler M, Eickelberg O, et al. Pharmacokinetic and pharmacometabolomic study of pirfenidone in normal mouse tissues using high mass resolution MALDI-FTICR-mass spectrometry imaging. Histochem Cell Biol. 2016;145:201–11. https://doi.org/10.1007/s00418-015-1382-7.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Bodzon-Kulakowska A, Antolak A, Drabik A, Marszalek-Grabska M, Kotlińska J, Suder P. Brain lipidomic changes after morphine, cocaine and amphetamine administration—DESI—MS imaging study. Biochim Biophys Acta - Mol Cell Biol Lipids. 2017;1862:686–91. https://doi.org/10.1016/j.bbalip.2017.04.003.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Joye T, Bararpour N, Augsburger M, Boutrel B, Thomas A. In situ metabolomic changes in rat hippocampus after acute cocaine administration. Int J Mass Spectrom. 2017:1–5. https://doi.org/10.1016/j.ijms.2017.12.001.

  47. 47.

    Philipsen MH, Phan NNT, Fletcher JS, Malmberg P, Ewing AG (2018) Mass spectrometry imaging shows cocaine and methylphenidate have opposite effects on major lipids in Drosophila brain. ACS Chem Neurosci acschemneuro.8b00046. doi: https://doi.org/10.1021/acschemneuro.8b00046.

  48. 48.

    Roux A, Muller L, Jackson SN, Baldwin K, Womack V, Pagiazitis JG, et al. Chronic ethanol consumption profoundly alters regional brain ceramide and sphingomyelin content in rodents. ACS Chem Neurosci. 2015;6:247–59. https://doi.org/10.1021/cn500174c.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Hanrieder J, Gerber L, Persson Sandelius Å, Brittebo EB, Ewing AG, Karlsson O. High resolution metabolite imaging in the hippocampus following neonatal exposure to the environmental toxin BMAA using ToF-SIMS. ACS Chem Neurosci. 2014;5:568–75. https://doi.org/10.1021/cn500039b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    European Medicines Agency (2013) AUBAGIO—Assessment Report No. EMEA/H/C/002514/0000. 44:150.

  51. 51.

    Franklin KBJ, Paxinos G. The mouse brain in stereotaxic coordinates, compact. In: The coronal plates and diagrams. Amsterdam: Elsevier Academic Press; 2008.

    Google Scholar 

  52. 52.

    Miura D, Fujimura Y, Yamato M, Hyodo F, Utsumi H, Tachibana H, et al. Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors. Anal Chem. 2010;82:9789–96. https://doi.org/10.1021/ac101998z.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Irie M, Fujimura Y, Yamato M, Miura D, Wariishi H. Integrated MALDI-MS imaging and LC-MS techniques for visualizing spatiotemporal metabolomic dynamics in a rat stroke model. Metabolomics. 2014;10:473–83. https://doi.org/10.1007/s11306-013-0588-8.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Rzagalinski I, Hainz N, Meier C, Tschernig T, Volmer DA. MALDI mass spectral imaging of bile acids observed as deprotonated molecules and proton-bound dimers from mouse liver sections. J Am Soc Mass Spectrom. 2018. https://doi.org/10.1007/s13361-017-1886-6.

  55. 55.

    Schramm T, Hester A, Klinkert I, Both JP, Heeren RMA, Brunelle A, et al. ImzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome. 2012;75:5106–10. https://doi.org/10.1016/j.jprot.2012.07.026.

    Article  CAS  Google Scholar 

  56. 56.

    Bokhart MT, Nazari M, Garrard KP, Muddiman DC. MSiReader v1.0: evolving open-source mass spectrometry imaging software for targeted and untargeted analyses. J Am Soc Mass Spectrom. 2018;29:8–16. https://doi.org/10.1007/s13361-017-1809-6.

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51. https://doi.org/10.1097/01.ftd.0000179845.53213.39.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–17. https://doi.org/10.1093/nar/gkx1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36:423–6. https://doi.org/10.1093/nar/gkn282.

    Article  CAS  Google Scholar 

  60. 60.

    Deininger SO, Cornett DS, Paape R, Becker M, Pineau C, Rauser S, et al. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem. 2011;401:167–81. https://doi.org/10.1007/s00216-011-4929-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Parekh JM, Vaghela RN, Sutariya DK, Sanyal M, Yadav M, Shrivastav PS. Chromatographic separation and sensitive determination of teriflunomide, an active metabolite of leflunomide in human plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878:2217–25. https://doi.org/10.1016/j.jchromb.2010.06.028.

    Article  CAS  Google Scholar 

  62. 62.

    Rakhila H, Rozek T, Hopkins A, Proudman S, Cleland L, James M, et al. Quantitation of total and free teriflunomide (A77 1726) in human plasma by LC-MS/MS. J Pharm Biomed Anal. 2011;55:325–31. https://doi.org/10.1016/j.jpba.2011.01.034.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Barber TW, Brockway JA, Higgins LS. The density of tissues in and about the head. Acta Neurol Scand. 1970;46:85–92.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    (2013) Australian public assessment report for teriflunomide. Aust Gov Dep Heal Ageing Ther Good Adm.

  65. 65.

    Rozman B. Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet. 2002;41:421–30. https://doi.org/10.2165/00003088-200241060-00003.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Kis E, Nagy T, Jani M, Molnár É, Jánossy J, Ujhellyi O, et al. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis. 2009;68:1201–7. https://doi.org/10.1136/ard.2007.086264.

    Article  CAS  PubMed  Google Scholar 

  67. 67.

    Cheng Z, Zhang J, Liu H, Li Y, Zhao Y, Yang E. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer’s disease-related animal models despite reported blood-brain barrier disruption. Drug Metab Dispos. 2010;38:1355–61. https://doi.org/10.1124/dmd.110.033324.Animal.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64:1471–83. https://doi.org/10.1007/s00018-007-6497-0.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29. https://doi.org/10.1016/j.tins.2008.10.001.

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Burnstock G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7:575–90. https://doi.org/10.1038/nrd2605.

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Micheli V, Camici M, Tozzi MG, Ipata PL, Sestini S, Bertelli M, et al. Neurological disorders of purine and pyrimidine metabolism. Curr Top Med Chem. 2011;1:923–47. https://doi.org/10.2174/156802611795347645.

    Article  Google Scholar 

  72. 72.

    Veremeyko T, Yung AWY, Dukhinova M, Kuznetsova IS, Pomytkin I, Lyundup A, et al. Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.00050.

  73. 73.

    Cieślak M, Kukulski F, Komoszyński M. Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal. 2011;7:393–402. https://doi.org/10.1007/s11302-011-9250-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res. 2016;65:511–20. https://doi.org/10.1007/s00011-016-0936-z.

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Hidetoshi TS, Makoto T, Inoue K. P2Y receptors in microglia and neuroinflammation. Wiley Interdiscip Rev Membr Transp Signal. 2012;1:493–501. https://doi.org/10.1002/wmts.46.

    Article  CAS  Google Scholar 

  76. 76.

    Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology. 2016;104:4–17. https://doi.org/10.1016/j.neuropharm.2015.05.031.

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Lecca D, Ceruti S. Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem Pharmacol. 2008;75:1869–81. https://doi.org/10.1016/j.bcp.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  78. 78.

    Mandolesi G, Gentile A, Musella A, Fresegna D, De Vito F, Bullitta S, et al. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat Rev Neurol. 2015;11:711–24. https://doi.org/10.1038/nrneurol.2015.222.

    Article  CAS  PubMed  Google Scholar 

  79. 79.

    Lutz NW, Viola A, Malikova I, Confort-Gouny S, Audoin B, Ranjeva JP, et al. Inflammatory multiple-sclerosis plaques generate characteristic metabolic profiles in cerebrospinal fluid. PLoS One. 2007;2:1–9. https://doi.org/10.1371/journal.pone.0000595.

    Article  CAS  Google Scholar 

  80. 80.

    Vingara LK, Yu HJ, Wagshul ME, Serafin D, Christodoulou C, Pelczer I, et al. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage. 2013;82:586–94. https://doi.org/10.1016/j.neuroimage.2013.05.125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler J. 2014;20:1425–31. https://doi.org/10.1177/1352458514533400.

    Article  CAS  Google Scholar 

  82. 82.

    Regenold WT, Phatak P, Makley MJ, Stone RD, M a K. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci. 2008;275:106–12. https://doi.org/10.1016/j.jns.2008.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Shkil’nyuk GG, Il’ves AG, Kataeva GV, Prakhova LN, Reznikova TN, Seliverstova NA, et al. The role of changes in glucose metabolism in the brain in the formation of cognitive impairments in patients with remitting and secondary-progressive multiple sclerosis. Neurosci Behav Physiol. 2013;43:565–70.

    Article  CAS  Google Scholar 

  84. 84.

    Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, et al. Brain glycogen—new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg. 2012;4:1–15. https://doi.org/10.3389/fnene.2012.00003.

    Article  CAS  Google Scholar 

  85. 85.

    Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, et al. A G protein-coupled receptor for UDP-glucose. J Biol Chem. 2000;275:10767–71.

    Article  CAS  PubMed  Google Scholar 

  86. 86.

    Harden TK, Sesma JI, Fricks IP, Lazarowski ER. Signalling and pharmacological properties of the P2Y14 receptor. Acta Physiol. 2010;199:149–60. https://doi.org/10.1111/j.1748-1716.2010.02116.x.

    Article  CAS  Google Scholar 

  87. 87.

    Brautigam VM, Dubyak GR, Crain JM, Watters JJ. The inflammatory effects of UDP-glucose in N9 microglia are not mediated by P2Y14 receptor activation. Purinergic Signal. 2008;4:73–8. https://doi.org/10.1007/s11302-008-9095-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Partida-Sánchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, Garvy B, et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med. 2001;7:1209–16. https://doi.org/10.1038/nm1101-1209.

    Article  PubMed  Google Scholar 

  89. 89.

    Higashida H, Hashii M, Yokoyama S, Hoshi N, Asai K, Kato T. Cyclic ADP-ribose as a potential second messenger. J Neurochem. 2001;76:321–31.

    Article  CAS  PubMed  Google Scholar 

  90. 90.

    Moore DJ, Murdock PR, Watson JM, Faull RLM, Waldvogel HJ, Szekeres PG, et al. GPR105, a novel Gi/o-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. Mol Brain Res. 2003;118:10–23. https://doi.org/10.1016/S0169-328X(03)00330-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D.A.V. acknowledges research support by the German Research Foundation (FTICR-MS Facility, INST 256/356-1). The authors thank Alexander Grißmer and Alina Mattheis (Dept. of Anatomy and Cell Biology, Saarland University) for the expert technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dietrich A. Volmer.

Ethics declarations

All animal experiments were performed in accordance with international regulations and permission from the local research ethics committee (Landesamt für Verbraucherschutz Saarland, TVV 23/2015).

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 301 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rzagalinski, I., Hainz, N., Meier, C. et al. Spatial and molecular changes of mouse brain metabolism in response to immunomodulatory treatment with teriflunomide as visualized by MALDI-MSI. Anal Bioanal Chem 411, 353–365 (2019). https://doi.org/10.1007/s00216-018-1444-5

Download citation

Keywords

  • Mass spectrometry imaging
  • MALDI
  • FTICR
  • Teriflunomide
  • Multiple sclerosis
  • Metabolomic imaging