Skip to main content
Log in

Balancing metabolome coverage and reproducibility for untargeted NMR-based metabolic profiling in tissue samples through mixture design methods

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Untargeted metabolomics attempts to acquire a comprehensive and reproducible set of small-molecule metabolites in biological systems. However, metabolite extraction method significantly affects the quality of metabolomics data. In the present study, we calculated the number of peaks (NP) and coefficient of variation (CV) to reflect metabolome coverage and reproducibility in untargeted NMR-based metabolic profiling of tissue samples in rats under different methanol/chloroform/water (MCW) extraction conditions. Different MCW extractions expectedly generated diverse characteristics of metabolome. Moreover, the classic MCW method revealed tissue-specific differences in the NP and CV values. To obtain high-quality metabolomics data, therefore, we used mixture design methods to optimize the MCW extraction strategy by maximizing the NP value and minimizing the CV value in each tissue sample. Results show that the optimal formulations of MCW extraction were 2:2:8 (ml/mg tissue) for brain sample, 2:4:6 (ml/mg tissue) for heart sample, 1.3:2:8.7 (ml/mg tissue) for liver sample, 4:2:6 (ml/mg tissue) for kidney sample, 2:3:7 (ml/mg tissue) for muscle sample, and 2:4:6 (ml/mg tissue) for pancreas sample. Therefore, these findings demonstrate that different tissue samples need a specific optimal extraction condition for balancing metabolome coverage and reproducibility in the untargeted metabolomics study. Mixture design method is an effective tool to optimize metabolite extraction strategy for tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patti GJ, Yanes O, Siuzdak G. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doerr A. Global metabolomics. Nat Methods. 2017;14:32.

    Article  CAS  Google Scholar 

  3. Mushtaq MY, Choi YH, Verpoorte R, Wilson EG. Extraction for metabolomics: access to the metabolome. Phytochem Anal. 2014;25(4):291–306.

    Article  CAS  PubMed  Google Scholar 

  4. Choi YH, Verpoorte R. Metabolomics: what you see is what you extract. Phytochem Anal. 2014;25(4):289–90.

    Article  CAS  PubMed  Google Scholar 

  5. Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem. 2013;85(4):2169–76.

    Article  CAS  PubMed  Google Scholar 

  6. Tulipani S, Llorach R, Urpi-Sarda M, Andres-Lacueva C. Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal Chem. 2012;85(1):341–8.

    Article  PubMed  Google Scholar 

  7. Sitnikov DG, Monnin CS, Vuckovic D. Systematic assessment of seven solvent and solid-phase extraction methods for metabolomics analysis of human plasma by LC-MS. Sci Rep. 2016;6:38885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. García-Cañaveras JC, López S, Castell JV, Donato MT, Lahoz A. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells. Anal Bioanal Chem. 2016;408(4):1217–30.

    Article  PubMed  Google Scholar 

  9. Ibáñez C, Simó C, Palazoglu M, Cifuentes A. GC-MS based metabolomics of colon cancer cells using different extraction solvents. Anal Chim Acta. 2017;986:48–56.

    Article  PubMed  Google Scholar 

  10. Römisch-Margl W, Prehn C, Bogumil R, Röhring C, Suhre K, Adamski J. Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics. 2012;8(1):133–42.

    Article  Google Scholar 

  11. Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS, et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc. 2013;8(1):17–32.

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Xu J, Chen Y, Zhang R, He J, Wang Z, et al. Optimization and evaluation strategy of esophageal tissue preparation protocols for metabolomics by LC–MS. Anal Chem. 2016;88(7):3459–64.

    Article  CAS  PubMed  Google Scholar 

  13. Naz S, García A, Barbas C. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal Chem. 2013;85(22):10941–8.

    Article  CAS  PubMed  Google Scholar 

  14. Diémé B, Lefèvre A, Nadal-Desbarats L, Galineau L, Hounoum BM, Montigny F, et al. Workflow methodology for rat brain metabolome exploration using NMR, LC-MS and GC-MS analytical platforms. J Pharm Biomed Anal. 2017;142:270–8.

    Article  PubMed  Google Scholar 

  15. Wu H, Southam AD, Hines A, Viant MR. High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Anal Biochem. 2008;372(2):204–12.

    Article  CAS  PubMed  Google Scholar 

  16. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  17. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

  18. Zheng H, Clausen MR, Dalsgaard TK, Mortensen G, Bertram HC. Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches. Anal Chem. 2013;85(15):7109–16.

    Article  CAS  PubMed  Google Scholar 

  19. Montgomery DC. Design and analysis of experiments. John Wiley & Sons; 2017.

  20. Savorani F, Tomasi G, Engelsen SB. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson. 2010;202:190–202.

    Article  CAS  PubMed  Google Scholar 

  21. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0-the human metabolome database in 2013. Nucl Acids Res. 2012;41(D1):801–7.

    Article  Google Scholar 

  22. Xia J, Sinelnikov IV, Han B, Wishart DS. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucl Acids Res. 2015;43:251–7.

    Article  Google Scholar 

  23. Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7.

    Article  CAS  PubMed  Google Scholar 

  24. Vinayavekhin N, Homan EA, Saghatelian A. Exploring disease through metabolomics. ACS Chem Biol. 2009;5(1):91–103.

    Article  Google Scholar 

  25. Suhre K. Metabolic profiling in diabetes. J Endocrinol. 2014;221(3):75–85.

    Article  Google Scholar 

  26. Lindahl A, Sääf S, Lehtiö J, Nordström A. Tuning metabolome coverage in reversed phase LC–MS metabolomics of MeOH extracted samples using the reconstitution solvent composition. Anal Chem. 2017;89(14):7356–64.

    Article  CAS  PubMed  Google Scholar 

  27. Contrepois K, Jiang L, Snyder M. Optimized analytical procedures for the untargeted metabolomic profiling of human urine and plasma by combining hydrophilic interaction (HILIC) and reverse-phase liquid chromatography (RPLC)–mass spectrometry. Mol Cell Proteomics. 2015;14(6):1684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang W, Chen Y, Xi C, Zhang R, Song Y, Zhan Q, et al. Liquid chromatography–tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Anal Chem. 2013;85(5):2606–10.

    Article  CAS  PubMed  Google Scholar 

  29. Eriksson L, Johansson E, Wikström C. Mixture design-design generation, PLS analysis, and model usage. Chemom Intell Lab Syst. 1998;43(1–2):1–24.

    Article  CAS  Google Scholar 

  30. Lin CY, Wu H, Tjeerdema RS, Viant MR. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics. 2007;3(1):55–67.

    Article  CAS  Google Scholar 

  31. Robert O, Sabatier J, Desoubzdanne D, Lalande J, Balayssac S. Gilard V, et al. pH optimization for a reliable quantification of brain tumor cell and tissue extracts with 1H NMR: focus on choline-containing compounds and taurine. Anal Bioanal Chem. 2011;399(2):987–99.

    Article  CAS  PubMed  Google Scholar 

  32. Anwar MA, Vorkas PA, Li JV, Shalhoub J, Want EJ, Davies AH, et al. Optimization of metabolite extraction of human vein tissue for ultra performance liquid chromatography-mass spectrometry and nuclear magnetic resonance-based untargeted metabolic profiling. Analyst. 2015;140(22):7586–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Laboratory Animal Center of Wenzhou Medical University is acknowledged for technical services.

Funding

This study was supported by the National Natural Science Foundation of China (Nos. 21605115, 81771386, and 21575105) and the Public Welfare Technology Application Research Foundation of Zhejiang Province (No. 2017C33066).

Author information

Authors and Affiliations

Authors

Contributions

HCG and HZ contributed to the experimental design. ZTN, AMC, XZ, JXC, and QX contributed to the sample collection and NMR metabolomics analysis. HZ and HCG contributed to the data analysis, result interpretation, and writing. All authors have read, revised, and approved the final manuscript.

Corresponding author

Correspondence to Hongchang Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of Wenzhou Medical University.

Electronic supplementary material

ESM 1

(PDF 2646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, H., Ni, Z., Cai, A. et al. Balancing metabolome coverage and reproducibility for untargeted NMR-based metabolic profiling in tissue samples through mixture design methods. Anal Bioanal Chem 410, 7783–7792 (2018). https://doi.org/10.1007/s00216-018-1396-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1396-9

Keywords

Navigation