Skip to main content

Advertisement

Log in

Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is a need for blood glucose monitoring techniques that eliminate the painful and invasive nature of current methods, while maintaining the reliability and accuracy of established medical technology. This research aims to ultimately address these shortcomings in critically ill pediatric patients. Presented in this work is an alternative, minimally invasive technique that uses microneedles (MN) for the collection of transdermal glucose (TG). Due to their comparable skin properties, diffusion studies were performed on full thickness Yucatan miniature pig skin mounted to an in-line diffusion flow cell and on different skin sites of human subjects. Collected TG samples were measured with a L255C mutant of the E. coli glucose-binding protein (GBP) with an attached fluorescent probe. The binding constant (Kd = 0.67 μM) revealed the micromolar sensitivity and high selectivity of the his-tagged GBP biosensor for glucose, making it suitable for TG measurements. In both the animal and human models, skin permeability and TG diffusion across the skin increased with MN application. For intact and MN-treated human skin, a significant positive linear correlation (r > 0.95, p < 0.01) existed between TG and BG. The micromolar sensitivity of GBP minimized the volume required for interstitial fluid glucose analysis allowing MN application time (30 s) to be shortened compared to other studies. This time reduction can help in eliminating skin irritation issues and improving practical use of the technique by caregivers in the hospital. In addition, the his-tagged optical biosensor used in this work can be immobilized and used with a portable sensing fluorometer device at the point of care (POC) making this minimally invasive technology more ideal for use in the pediatric intensive care unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Receiver and donor solutions are conventional designations for in vitro topical drug delivery experiments where the drug (donor) diffuses from the epidermal side of the skin to the flow solution (receiver). In our experiments, glucose diffuses from the flow solution to the epidermal side.

References

  1. Wolfsdorf J, Craig ME, Daneman D, Dunger D, Edge J, Lee W, et al. Diabetic ketoacidosis in children and adolescents with diabetes. Pediatr Diabetes. 2009;10:118–33. https://doi.org/10.1111/j.1399-5448.2009.00569.x.

    Article  PubMed  Google Scholar 

  2. Piper HG, Alexander JL, Shukla A, Pigula F, Costello JM, Laussen PC, et al. Real-time continuous glucose monitoring in pediatric patients during and after cardiac surgery. Pediatrics. 2006;118(3):1176–84. http://www.ncbi.nlm.nih.gov/pubmed/16951013

    Article  Google Scholar 

  3. Allen HF, Rake A, Roy M, Brenner D, McKiernan CA. Prospective detection of hyperglycemia in critically ill children using continuous glucose monitoring*. Pediatr Crit Care Med. 2008;9(2):153–8. https://insights.ovid.com/crossref?an=00130478-200803000-00003

    Article  Google Scholar 

  4. Joseph JI, Hipszer B, Mraovic B, Chervoneva I, Joseph M, Grunwald Z. Clinical need for continuous glucose monitoring in the hospital. J Diabetes Sci Technol. 2009;33(66):1309–18. https://doi.org/10.1177/193229680900300611.

    Article  Google Scholar 

  5. Bridges BC, Preissig CM, Maher KO, Rigby MR. Continuous glucose monitors prove highly accurate in critically ill children https://ccforum.biomedcentral.com/track/pdf/10.1186/cc9280

  6. Barrio Castellanos R, Harris DL, Battin MR, Weston PJ, Harding JE. Continuous glucose monitoring in newborn babies at risk of hypoglycemia. Av en Diabetol. 2010;26(3):209–10. https://doi.org/10.1016/j.jpeds.2010.02.003.

    Article  Google Scholar 

  7. Signal M, Pretty CG, Chase JG, Le Compte A, Shaw GM. Continuous glucose monitors and the burden of tight glycemic control in critical care: can they cure the time cost? J Diabetes Sci Technol. 2010;4(3):625–35. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2901040&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  8. Pretty CG, Chase JG, Le Compte A, Shaw GM, Signal M. Hypoglycemia detection in critical care using continuous glucose monitors: an in silico proof of concept analysis. J Diabetes Sci Technol. 2010;4(1):15–24. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2825620&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  9. Beardsall K, Ogilvy-Stuart AL, Ahluwalia J, Thompson M, Dunger DB. The continuous glucose monitoring sensor in neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 2005;90(4):F307–10. Available from: http://fn.bmj.com/content/90/4/F307.long

    Article  CAS  Google Scholar 

  10. Wintergerst KA, Foster MB, Sullivan JE, Woods CR, Affiliations A. Association of hyperglycemia, glucocorticoids, and insulin use with morbidity and mortality in the pediatric intensive care unit. J Diabetes Sci Technol. 2012;6(1) https://doi.org/10.1177/193229681200600102.

    Article  Google Scholar 

  11. Wintergerst KA, Buckingham B, Gandrud L, Wong BJ, Kache S, Wilson DM. Association of hypoglycemia, hyperglycemia, and glucose variability with morbidity and death in the pediatric intensive care unit. Pediatrics. 2006;118(1):173–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16818563

    Article  Google Scholar 

  12. Ge X, Rao G, Tolosa L. On the possibility of real-time monitoring of glucose in cell culture by microdialysis using a fluorescent glucose binding protein sensor. Biotechnol Prog. 2008;24(3):691–7.

    Article  CAS  Google Scholar 

  13. Ge X, Tolosa L, Rao G. Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem. 2004;76(5):1403–10.

    Article  CAS  Google Scholar 

  14. Ge X, Rao G, Kostov Y, Kanjananimmanont S, Viscardi RM, Woo H, et al. Detection of trace glucose on the surface of a semipermeable membrane using a fluorescently labeled glucose-binding protein: a promising approach to noninvasive glucose monitoring. J Diabetes Sci Technol. 2013;7(1):4–12. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3692211&tool=pmcentrez&rendertype=abstract

    Article  Google Scholar 

  15. Ge X, Lam H, Modi SJ, LaCourse WR, Rao G, Tolosa L. Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol. 2007;1(6):864–72.

    Article  Google Scholar 

  16. Fonin AV, Stepanenko OV, Povarova OI, Volova CA, Philippova EM, Bublikov GS, et al. Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ. 2014;2:e275. Available from: https://peerj.com/articles/275

    Article  Google Scholar 

  17. Khan F, Saxl TE, Pickup JC. Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem. 2010;399(1):39–43. https://www.sciencedirect.com/science/article/pii/S0003269709008112

    Article  CAS  Google Scholar 

  18. Joel S, Turner KB, Daunert S. Glucose recognition proteins for glucose sensing at physiological concentrations and temperatures. ACS Chem Biol. 2014;9(7):1595–602. https://doi.org/10.1021/cb500132g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quiocho FA. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Philos Trans R Soc Lond Ser B Biol Sci. 1990;326(1236):341–52. http://www.ncbi.nlm.nih.gov/pubmed/1970641

    Article  CAS  Google Scholar 

  20. Ge X, Tolosa L, Simpson J, Rao G. Genetically engineered binding proteins as biosensors for fermentation and cell culture. Biotechnol Bioeng. 2003;84(6):723–31.

    Article  CAS  Google Scholar 

  21. Salins LL, Ware RA, Ensor CM, Daunert S. A novel reagentless sensing system for measuring glucose based on the galactose/glucose-binding protein. Anal Biochem. 2001;294(1):19–26.

    Article  CAS  Google Scholar 

  22. Kanjananimmanont S, Ge X, Mupparapu K, Rao G, Potts R, Tolosa L. Passive diffusion of transdermal glucose: noninvasive glucose sensing using a fluorescent glucose binding protein. J Diabetes Sci Technol. 2014;8(2):291–8. http://www.ncbi.nlm.nih.gov/pubmed/24876581

    Article  CAS  Google Scholar 

  23. Tiangco C, Andar A, Quarterman J, Ge X, Sevilla Iii F, Rao G, et al. Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Anal Bioanal Chem. 2017;409:3475–82. https://link.springer.com/content/pdf/10.1007%2Fs00216-017-0289-7.pdf

    Article  CAS  Google Scholar 

  24. Khanna P, Strom JA, Malone JI, Bhansali S. Microneedle-based automated therapy for diabetes mellitus. J Diabetes Sci Technol. 2008;2(6):1122–9. Available from: http://dst.sagepub.com/content/2/6/1122.abstract

    Article  Google Scholar 

  25. Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. Mater Sci Eng B. 2006;132(1–2):151–4.

    Article  CAS  Google Scholar 

  26. Yadav JD, Vaidya KA, Kulkarni PR, Raut RA. Microneedles: promising technique for transdermal drug delivery. Int J Pharm Bio Sci. 2011;2:684–708.

  27. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922–5. http://linkinghub.elsevier.com/retrieve/pii/S0022354915506242

    Article  CAS  Google Scholar 

  28. Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther. 2005;7(1):131–41. https://doi.org/10.1089/dia.2005.7.131.

    Article  CAS  PubMed  Google Scholar 

  29. Sakaguchi K, Hirota Y, Hashimoto N, Ogawa W, Sato T, Okada S, et al. A minimally invasive system for glucose area under the curve measurement using interstitial fluid extraction technology: evaluation of the accuracy and usefulness with oral glucose tolerance tests in subjects with and without diabetes. Diabetes Technol Ther. 2012;14(6):485–91. https://doi.org/10.1089/dia.2011.0255.

    Article  CAS  PubMed  Google Scholar 

  30. Donnelly RF, Mooney K, Caffarel-Salvador E, Torrisi BM, Eltayib E, McElnay JC. Microneedle-mediated minimally invasive patient monitoring. Ther Drug Monit. 2013; http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00007691-900000000-99442

  31. Romanyuk AV, Zvezdin VN, Samant P, Grenader MI, Zemlyanova M, Prausnitz MR. Collection of analytes from microneedle patches. Anal Chem. 2014;86(21):10520–3. https://doi.org/10.1021/ac503823p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caffarel-Salvador E, Brady AJ, Eltayib E, Meng T, Alonso-Vicente A, Gonzalez-Vazquez P, et al. Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. Chan C, editor. PLoS One. 2015;10(12):e0145644. Available from: http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145644&type=printable

  33. Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29(37):1702243. https://doi.org/10.1002/adma.201702243.

    Article  CAS  Google Scholar 

  34. Kiang T, Ranamukhaarachchi S, Ensom M. Revolutionizing therapeutic drug monitoring with the use of interstitial fluid and microneedles technology. Pharmaceutics. 2017;9(4):43. http://www.ncbi.nlm.nih.gov/pubmed/29019915

    Article  Google Scholar 

  35. Zimmermann S, Fienbork D, Stoeber B, Flounders AW, Liepmann D. A microneedle-based glucose monitor: fabricated on a wafer-level using in-device enzyme immobilization. In: TRANSDUCERS’03 12th International Conference on Solid-State Sensors, Actuators and Microsystems Digest of Technical Papers (Cat No03TH8664). IEEE;. p. 99–102. http://ieeexplore.ieee.org/document/1215262/

  36. Zimmermann S, Fienbork D, Flounders AW, Liepmann D. In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sensors Actuators B. 2004;99:163–73. Available from: https://ac.els-cdn.com/S0925400503005525/1-s2.0-S0925400503005525-main.pdf?_tid=020881da-3da9-4b06-84bf-c64ada008838&acdnat=1533673088_35e97cd3db5f6bd17c320720a55d18b0

    Article  CAS  Google Scholar 

  37. Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors Actuators A. 2004;114:267–75. Available from: https://ac.els-cdn.com/S0924424703006381/1-s2.0-S0924424703006381-main.pdf?_tid=516bf37c-6980-4149-88a5-63fb8c136f85&acdnat=1533668749_77d67ae1d55cee1ddb39130ed33ed624

    Article  CAS  Google Scholar 

  38. Strambini LM, Longo A, Scarano S, Prescimone T, Palchetti I, Minunni M, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. 2014; Available from: https://doi.org/10.1016/j.bios.2014.11.010

    Article  CAS  Google Scholar 

  39. Sharma S, Huang Z, Rogers M, Boutelle M, Cass AEG. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal Bioanal Chem. 2016;408(29):8427–35. https://doi.org/10.1007/s00216-016-9961-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jina A, Tierney MJ, Tamada JA, McGill S, Desai S, Chua B, et al. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J Diabetes Sci Technol. 2014;8(3):483–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4455438&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  41. Chua B, Desai SP, Tierney MJ, Tamada JA, Jina AN. Effect of microneedles shape on skin penetration and minimally invasive continuous glucose monitoring in vivo. Sensors Actuators A Phys. 2013;203:373–81. https://doi.org/10.1016/j.sna.2013.09.026.

    Article  CAS  Google Scholar 

  42. Lam H, Kostov Y, Rao G, Tolosa L. Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem. 2008;383(1):61–7.

    Article  CAS  Google Scholar 

  43. Gupta VK, Zatz JL, Rerek M. Percutaneous absorption of sunscreens through micro-Yucatan pig skin in vitro. Pharm Res. 1999;16(10):1602–7. https://doi.org/10.1023/A:1018916907263.

    Article  CAS  PubMed  Google Scholar 

  44. Milewski M. Microneedle-assisted transdermal delivery of naltrexone species: in vitro permeation and in vivo pharmacokinetics studies. Vol. 160. University of Kentucky Doctoral Dissertations; 2011. Available from: https://uknowledge.uky.edu/gradschool_diss/160

  45. Tiangco C, Fon D, Sardesai N, Kostov Y, Sevilla F, Rao G, et al. A fiber optic biosensor for umolar levels of glucose less figures. Sensors Actuators. 2015;

  46. Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release. 2017;260:164–82. Available from: https://www.sciencedirect.com/science/article/pii/S016836591730603X

    Article  CAS  Google Scholar 

  47. McCrudden MTC, McAlister E, Courtenay AJ, González-Vázquez P, Raj Singh TR, Donnelly RF. Microneedle applications in improving skin appearance. Exp Dermatol. 2015;24(8):561–6. https://doi.org/10.1111/exd.12723.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Eunice Kennedy Shriver National Institute of Child Health and Human Development for grant R41HD088223 and the UMB-UMBC Research and Innovation Partnership Grant Program for project funding, as well as, the UMBC Meyerhoff Graduate Program and LSAMP Bridges to the Doctorate Program for S. Brown’s funding. The authors would like to thank Dr. Russel Potts for invaluable input and Eric Ankers for assistance with experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Tolosa.

Ethics declarations

The authors declare no conflict of interest. Yucatan minipig skin was purchased from Sinclair BioResources who comply with multiple agencies and are a USDA licensed breeder (43-A-5793). The company is in full compliance with the Animal Welfare Act and has maintained accreditation by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International) since 1995.

The studies on human subjects were conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Office of Research Protections and Compliance of UMBC (Protocol Y17LT05060) on November 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, S., Zambrana, P.N., Ge, X. et al. Minimally invasive technique for measuring transdermal glucose with a fluorescent biosensor. Anal Bioanal Chem 410, 7249–7260 (2018). https://doi.org/10.1007/s00216-018-1336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1336-8

Keywords