Skip to main content
Log in

Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Variable domain of heavy chain antibody (nanobody, Nb) derived from camelids is an efficient reagent in monitoring environmental contaminants. Oriented conjugates of Nbs and bacterial magnetic particles (BMPs) provide new tools for the high-throughput immunoassay techniques. An anti-tetrabromobisphenol-A (TBBPA) Nb genetically integrated with an extra cysteine residue at the C terminus was immobilized onto BMPs enclosed within the protein membrane, using a heterobifunctional reagent N-succinimidyl-3-(2-pyridyldithiol) propionate, to form a solid BMP-Nb complex. A rapid and sensitive enzyme-linked immunosorbent assay (ELISA) based on the combination of BMP-Nb and T5-horseradish peroxidase was developed for the analysis of TBBPA, with a total assay time of 30 min and a half-maximum signal inhibition concentration (IC50) of 1.04 ng/mL in PBS (pH 10, 10% methanol and 0.137 moL/L NaCl). This assay can even be performed in 100% methanol, with an IC50 value of 44.3 ng/mL. This assay showed quantitative recoveries of TBBPA from spiked canal water (114–124%) and sediment (109–113%) samples at 1.0–10 ng/mL (or ng/g (dw)). TBBPA residues determined by this assay in real canal water samples were below the limit of detection (LOD) and in real sediments were between <LOD and 23.4 ng/g (dw). The BMP-Nb-based ELISA shows promising application in environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Orlov AV, Bragina VA, Nikitin MP, Nikitin PI. Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. Biosens Bioelectron. 2016;79:423–39.

    Article  CAS  PubMed  Google Scholar 

  2. Deng Q, Qiu M, Wang Y, Lv P, Wu C, Sun L, et al. A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues. Ecotoxicol Environ Saf. 2017;142:441–47.

    Article  CAS  PubMed  Google Scholar 

  3. Felix FS, Angnes L. Electrochemical immunosensors-A powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–78.

    Article  CAS  PubMed  Google Scholar 

  4. Matsunaga T, Kamiya S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol. 1987;26(4):328–32.

    Article  CAS  Google Scholar 

  5. Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol. 2004;2(3):217–30.

    Article  CAS  PubMed  Google Scholar 

  6. Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol. 2002;5(4):209–14.

    Article  CAS  PubMed  Google Scholar 

  7. Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res. 2017;203:19–28.

    Article  CAS  PubMed  Google Scholar 

  8. Gorby YA, Beveridge TJ, Blakemore RP. Characterization of the bacterial magnetosome membrane. J Bacteriol. 1988;170(2):834–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grünberg K, Muller E-C, Otto A, Reszka R, Linder D, Kube M, et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2004;70(2):1040–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura N, Hashimoto K, Matsunaga T. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem. 1991;63(3):268–72.

    Article  CAS  PubMed  Google Scholar 

  11. Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W, et al. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng. 2008;101(6):1313–20.

    Article  CAS  PubMed  Google Scholar 

  12. Takeyama H, Tsuzuki H, Chow S, Nakayama H, Matsunaga T. Discrimination between Atlantic and Pacific subspecies of northern Bluefin tuna (Thunnus thynnus) by magnetic-capture hybridization using bacterial magnetic particles. Mar Biotechnol (NY). 2000;2(4):309–13.

    CAS  Google Scholar 

  13. Liu Y, Li GR, Guo FF, Jiang W, Li Y, Li J. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Factories. 2010;9:99.

    Article  CAS  Google Scholar 

  14. Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of insulin using antibody−protein A−bacterial magnetic particle complexes. Anal Chem. 2000;72(15):3518–22.

    Article  CAS  PubMed  Google Scholar 

  15. Pečová M, Šebela M, Marková Z, Poláková K, Čuda J, Šafářová K, et al. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology. 2013;24(12):125102.

    Article  CAS  PubMed  Google Scholar 

  16. Li A, Zhang H, Zhang X, Wang Q, Tian JS, Li Y, et al. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. J Sep Sci. 2010;33(21):3437–43.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem. 1993;65(15):2036–39.

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura N, Matsunaga T. Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta. 1993;281(3):585–89.

    Article  CAS  Google Scholar 

  19. Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T, Takeyama H, et al. Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta. 2003;475(1–2):75–83.

    Article  CAS  Google Scholar 

  20. Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. Front Immunol. 2017;8:977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017;116:95–11.

    Article  CAS  PubMed  Google Scholar 

  22. Trilling AK, Harmsen MM, Ruigrok VJ, Zuilhof H, Beekwilder J. The effect of uniform capture molecule orientation on biosensor sensitivity: dependence on analyte properties. Biosens Bioelectron. 2013;40(1):219–26.

    Article  CAS  PubMed  Google Scholar 

  23. Davenport KR, Smith CA, Hofstetter H, Horn JR, Hofstetter O. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1021:114–21.

    Article  CAS  Google Scholar 

  24. Sukhanova A, Even-Desrumeaux K, Kisserli A, Tabary T, Reveil B, Millot JM, et al. Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine. 2012;8(4):516–25.

    Article  CAS  PubMed  Google Scholar 

  25. Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2011;77(17):6165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki S, Hasegawa A. Determination of hexabromocyclododecane diastereoisomers and tetrabromobisphenol A in water and sediment by liquid chromatography/mass spectrometry. Anal Sci. 2006;22(3):469–74.

    Article  CAS  PubMed  Google Scholar 

  27. Harrad S, Abdallah MAE, Rose NL, Turner SD, Davidson TA. Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ Sci Technol. 2009;43(24):9077–83.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Zhu N, Huang M, Liang Y, Zeng K, Wu X, et al. Sensitive immunoassay for simultaneous determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether: an effective and reliable strategy to estimate the typical tetrabromobisphenol A derivative and byproduct in aquatic environments. Environ Pollut. 2017;229:431–38.

    Article  CAS  PubMed  Google Scholar 

  29. Covaci A, Voorspoels S, Abdallah MAE, Geens T, Harrad S, Law RJ. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A. 2009;1216(3):346–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, et al. Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem. 2014;86(16):8296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu T, Wang J, Liu SZ, Lü C, Shelver WL, Li QX, et al. A highly sensitive and selective immunoassay for the detection of tetrabromobisphenol A in soil and sediment. Anal Chim Acta. 2012;751:119–27.

    Article  CAS  PubMed  Google Scholar 

  32. Schneider P, Hammock BD. Influence of the ELISA format and the hapten-enzyme conjugate on the sensitivity of an immunoassay for S-triazine herbicides using monoclonal antibodies. J Agric Food Chem. 1992;40(3):525–30.

    Article  CAS  Google Scholar 

  33. Yang Y, Lu L, Zhang J, Yang Y, Wu Y, Shao B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A. 2014;1328:26–34.

    Article  CAS  PubMed  Google Scholar 

  34. Heyen U, Schüler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol. 2003;61(5–6):536–44.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol. 2011;77(17):5851–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang J, Li S, Huang X, Tang T, Jiang W, Zhang T, et al. A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factor. Front Microbiol. 2013;4:210.

    PubMed  PubMed Central  Google Scholar 

  37. Wang J, Majkova Z, Bever CR, Yang J, Gee SJ, Li J, et al. One-step immunoassay for tetrabromobisphenol a using a camelid single domain antibody-alkaline phosphatase fusion protein. Anal Chem. 2015;87(9):4741–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saerens D, Conrath K, Govaert J, Muyldermans S. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol. 2008;377(2):478–88.

    Article  CAS  PubMed  Google Scholar 

  39. Arya S, Wang KY, Wong CC, Rahman AR. Anti-EpCAM modified LC-SPDP monolayer on gold microelectrode based electrochemical biosensor for MCF-7 cells detection. Biosens Bioelectron. 2013;41:446–51.

    Article  CAS  PubMed  Google Scholar 

  40. Yoon TJ, Lee W, Oh YS, Lee JK. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem. 2003;27(2):227–29.

    Article  CAS  Google Scholar 

  41. Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, et al. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta. 2012;93:433–38.

    Article  CAS  PubMed  Google Scholar 

  42. Abdallah MA-E. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)—a review. Environ Int. 2016;94:235–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Project of the National Natural Science Foundation of China (21577170), Key Project of Inter-Governmental International Scientific and Technological Innovation Cooperation (2016YFE0108900), China and the National Institute of Environmental Health Sciences Superfund Research Program, P42ES04699, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xu.

Ethics declarations

The authors declare that they have no conflict of interest. This research did not involve human participants or animals.

Electronic supplementary material

ESM 1

(PDF 494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Tian, J., Xu, J. et al. Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A. Anal Bioanal Chem 410, 6633–6642 (2018). https://doi.org/10.1007/s00216-018-1270-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1270-9

Keywords

Navigation