Skip to main content

Advertisement

Log in

HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Negative-ion hydrophilic liquid chromatography-electrospray ionization mass spectrometry (HILIC/ESI-MS) method has been optimized for the quantitative analysis of ganglioside (GM3) and other polar lipid classes, such as sulfohexosylceramides (SulfoHexCer), sulfodihexosylceramides (SulfoHex2Cer), phosphatidylglycerols (PG), phosphatidylinositols (PI), lysophosphatidylinositols (LPI), and phosphatidylserines (PS). The method is fully validated for the quantitation of the studied lipids in kidney normal and tumor tissues of renal cell carcinoma (RCC) patients based on the lipid class separation and the coelution of lipid class internal standard with the species from the same lipid class. The raw data are semi-automatically processed using our software LipidQuant and statistically evaluated using multivariate data analysis (MDA) methods, which allows the complete differentiation of both groups with 100% specificity and sensitivity. In total, 21 GM3, 28 SulfoHexCer, 26 SulfoHex2Cer, 10 PG, 19 PI, 4 LPI, and 7 PS are determined in the aqueous phase of lipidomic extracts from kidney tumor tissue samples and surrounding normal tissue samples of 20 RCC patients. S-plots allow the identification of most upregulated (PI 40:5, PI 40:4, GM3 34:1, and GM3 42:2) and most downregulated (PI 32:0, PI 34:0, PS 36:4, and LPI 16:0) lipids, which are primarily responsible for the differentiation of tumor and normal groups. Another confirmation of most dysregulated lipids is performed by the calculation of fold changes together with T and p values to highlight their statistical significance. The comparison of HILIC/ESI-MS data and matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) data confirms that lipid dysregulation patterns are similar for both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee JE, Spiegelman D, Hunter DJ, Albanes D, Bernstein L, Van Den Brandt PA, et al. Fat, protein, and meat consumption and renal cell cancer risk: a pooled analysis of 13 prospective studies. J Natl Cancer Inst. 2008;100(23):1695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li P, Znaor A, Holcatova I, Fabianova E, Mates D, Wozniak MB, et al. Regional geographic variations in kidney cancer incidence rates in European countries. Eur Urol. 2015;67(6):1134–41.

    Article  PubMed  Google Scholar 

  3. Bellocco R, Pasquali E, Rota M, Bagnardi V, Tramacere I, Scotti L, et al. Alcohol drinking and risk of renal cell carcinoma: results of a meta-analysis. Ann Oncol. 2012;23(9):2235–44.

    Article  CAS  PubMed  Google Scholar 

  4. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al. Renal cell carcinoma. Nat Rev Dis Primers. 2017;3:17009.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Petejova N, Martinek A. Renal cell carcinoma: review of etiology, pathophysiology and risk factors. Biomed Pap. 2016;160(2):183–94.

    Article  Google Scholar 

  6. Du Y, Dun Y, Qin C, Wang X, Xu T. Preoperative serum lipid profile is associated with the aggressiveness of renal cell carcinoma. Int J Clin Exp Pathol. 2016;9:9636–40.

    CAS  Google Scholar 

  7. Zhang C, Yu L, Xu T, Hao Y, Zhang X, Liu Z, et al. Association of dyslipidemia with renal cell carcinoma: a 1∶2 matched case-control study. PLoS One. 2013;8(3):e59796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buchler T, Bortlicek Z, Poprach A, Pavlik T, Veskrnova V, Honzirkova M, et al. Outcomes for patients with metastatic renal cell carcinoma achieving a complete response on targeted therapy: a registry-based analysis. Eur Urol. 2016;70(3):469–75.

    Article  PubMed  Google Scholar 

  9. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melichar B. Laboratory medicine and medical oncology: the tale of two Cinderellas. Clin Chem Lab Med. 2013;51(1):99–112.

    Article  CAS  PubMed  Google Scholar 

  11. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–62.

    Article  CAS  PubMed  Google Scholar 

  12. Aureli M, Mauri L, Ciampa MG, Prinetti A, Toffano G, Secchieri C, et al. GM1 ganglioside: past studies and future potential. Mol Neurobiol. 2016;53(3):1824–42.

    Article  CAS  PubMed  Google Scholar 

  13. Hakomori S-I. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990;265(31):18713–6.

    CAS  PubMed  Google Scholar 

  14. Sonnino S, Mauri L, Ciampa MG, Prinetti A. Gangliosides as regulators of cell signaling: ganglioside-protein interactions or ganglioside-driven membrane organization? J Neurochem. 2013;124(4):432–5.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res. 2012;53(8):1437–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Christie WW. http://lipidlibrary.aocs.org/. Accessed Jan 2018.

  17. Angerer TB, Magnusson Y, Landberg G, Fletcher JS. Lipid heterogeneity resulting from fatty acid processing in the human breast cancer microenvironment identified by GCIB-ToF-SIMS imaging. Anal Chem. 2016;88(23):11946–54.

    Article  CAS  PubMed  Google Scholar 

  18. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogene. 2016;5(1):e189.

    Article  CAS  Google Scholar 

  19. Makhlouf A, Fathalla M, Zakhary M, Makarem M. Sulfatides in ovarian tumors: clinicopathological correlates. Int J Gynecol Cancer. 2004;14(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  20. Guenther S, Muirhead LJ, Speller AV, Golf O, Strittmatter N, Ramakrishnan R, et al. Spatially resolved metabolic phenotyping of breast cancer by desorption electrospray ionization mass spectrometry. Cancer Res. 2015;75(9):1828–37.

    Article  CAS  PubMed  Google Scholar 

  21. Marquina G, Waki H, Fernandez LE, Kon K, Carr A, Valiente O, et al. Gangliosides expressed in human breast cancer. Cancer Res. 1996;56(22):5165–71.

    CAS  PubMed  Google Scholar 

  22. Yang L, Cui X, Zhang N, Li M, Bai Y, Han X, et al. Comprehensive lipid profiling of plasma in patients with benign breast tumor and breast cancer reveals novel biomarkers. Anal Bioanal Chem. 2015;407(17):5065–77.

    Article  CAS  PubMed  Google Scholar 

  23. Dill AL, Eberlin LS, Zheng C, Costa AB, Ifa DR, Cheng L, et al. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal Bioanal Chem. 2010;398(7):2969–78.

    Article  CAS  PubMed  Google Scholar 

  24. Kirwan GM, Johansson E, Kleemann R, Verheij ER, Wheelock ÅM, Goto S, et al. Building multivariate systems biology models. Anal Chem. 2012;84(16):7064–71.

    Article  CAS  PubMed  Google Scholar 

  25. Cífková E, Lísa M, Hrstka R, Vrána D, Gatěk J, Melichar B, et al. Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry and multivariate data analysis. Rapid Commun Mass Spectrom. 2017;31(3):253–63.

    Article  CAS  PubMed  Google Scholar 

  26. Cífková E, Holčapek M, Lísa M, Vrána D, Melichar B, Študent V. Lipidomic differentiation between human kidney tumors and surrounding normal tissues using HILIC-HPLC/ESI–MS and multivariate data analysis. J Chromatogr B. 2015;1000:14–21.

    Article  CAS  Google Scholar 

  27. Cífková E, Holčapek M, Lísa M, Vrána D, Gatěk J, Melichar B. Determination of lipidomic differences between human breast cancer and surrounding normal tissues using HILIC-HPLC/ESI-MS and multivariate data analysis. Anal Bioanal Chem. 2015;407(3):991–1002.

    Article  CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509.

    CAS  PubMed  Google Scholar 

  29. Ovčačíková M, Lísa M, Cífková E, Holčapek M. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography–electrospray ionization mass spectrometry. J Chromatogr A. 2016;1450:76–85.

    Article  CAS  PubMed  Google Scholar 

  30. Hájek R, Jirásko R, Lísa M, Cífková E, Holčapek M. Hydrophilic interaction liquid chromatography–mass spectrometry characterization of gangliosides in biological samples. Anal Chem. 2017;89(22):12425–32.

    Article  CAS  PubMed  Google Scholar 

  31. Jirásko R, Holčapek M, Kuneš M, Svatoš A. Distribution study of atorvastatin and its metabolites in rat tissues using combined information from UHPLC/MS and MALDI-Orbitrap-MS imaging. Anal Bioanal Chem. 2014;406(19):4601–10.

    Article  CAS  PubMed  Google Scholar 

  32. Guideline on bioanalytical method validation. Committee for Medicinal Products for Human Use (CHMP). First published August 2011, last updated June 2015. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/document/document_detail.jsp?webContentId=WC500109686%26mid=WC0b01ac058009a3dc.

  33. FDA guidance for industry: bioanalytical method validation. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Rockville, MD. 2001. https://www.fda.gov/ForIndustry/IndustryNoticesandGuidanceDocuments/default.htm.

  34. Izumi M, Shen G-J, Wacowich-Sgarbi S, Nakatani T, Plettenburg O, Wong C-H. Microbial glycosyltransferases for carbohydrate synthesis: α-2, 3-sialyltransferase from Neisseria gonorrheae. J Am Chem Soc. 2001;123(44):10909–18.

    Article  CAS  PubMed  Google Scholar 

  35. Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, et al. MALDI Orbitrap mass spectrometry profiling of dysregulated sulfoglycosphingolipids in renal cell carcinoma tissues. J Am Soc Mass Spectrom. 2017;28(8):1562–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The help of Assoc. Prof. Jozef Škarda with the histological staining is gratefully acknowledged.

Funding

The present work was supported by ERC CZ project no. LL1302 sponsored by the Ministry of Education, Youth and Sports of the Czech Republic. K.V. and L.O. thank the support of grant project no. 16-25687J sponsored by the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holčapek.

Ethics declarations

The study was approved by the hospital Ethical Committee, and patients signed informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 418 kb)

ESM 2

(XLSX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hájek, R., Lísa, M., Khalikova, M. et al. HILIC/ESI-MS determination of gangliosides and other polar lipid classes in renal cell carcinoma and surrounding normal tissues. Anal Bioanal Chem 410, 6585–6594 (2018). https://doi.org/10.1007/s00216-018-1263-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1263-8

Keywords

Navigation