Skip to main content

Advertisement

Log in

Analyte-driven self-assembly of graphene oxide sheets onto hydroxycamptothecin-functionalized upconversion nanoparticles for the determination of type I topoisomerases in cell extracts

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Type I topoisomerases (TOPOI), a potential diagnostic biomarker and a target for chemotherapeutic agents, play essential roles in DNA replication, transcription, chromosome segregation, and recombination. It is essential to develop analytical methods for accurate detection of TOPOI in biological fluids for early diagnosis of diseases. Here we show an assay for TOPOI on the basis of the target-induced self-assembly of graphene oxide (GO) sheets onto hydroxycamptothecin-functionalized upconversion nanoparticles (HCPT-UCNPs). The dipole-dipole coupling of HCPT-UCNPs (donor) and GO (acceptor) regulated by TOPOI enables Förster resonance energy transfer between the donor and the acceptor. Integration of minimal autofluorescence and highly specific affinity into the developed nanosensor allows reliable detection of TOPOI in the nanomolar range with the detection limit of 0.29 nM. The detection of TOPOI in breast cancer cells with recoveries from 96.3 to 103.7% shows the availability of the proposed assay in complicated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369–413.

    Article  CAS  PubMed  Google Scholar 

  2. Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002;3(6):430–40.

    Article  CAS  PubMed  Google Scholar 

  3. Giovanella BC, Stehlin JS, Wall ME, Wani MC, Nicholas AW, Liu LF, et al. DNA topoisomerase I—targeted chemotherapy of human colon cancer in xenografts. Science. 1989;246(4933):1046–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hsiang YH, Liu LF. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res. 1988;48(7):1722–6.

    CAS  PubMed  Google Scholar 

  5. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802.

    Article  CAS  PubMed  Google Scholar 

  6. Basili S, Moro S. Novel camptothecin derivatives as topoisomerase I inhibitors. Expert Opin Ther Pat. 2009;19(5):555–74.

    Article  CAS  PubMed  Google Scholar 

  7. Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH. The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst. 1993;85(4):271–91.

    Article  CAS  PubMed  Google Scholar 

  8. Sriram D, Yogeeswari P, Thirumurugan R, Bal TR. Camptothecin and its analogues: a review on their chemotherapeutic potential. Nat Prod Res. 2005;19(4):393–412.

    Article  CAS  PubMed  Google Scholar 

  9. Webb MR, Ebeler SE. A gel electrophoresis assay for the simultaneous determination of topoisomerase I inhibition and DNA intercalation. Anal Biochem. 2003;321(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  10. Liebes L, Potmesil M, Kim T, Pease D, Buckley M, Fry D, et al. Pharmacodynamics of topoisomerase I inhibition: western blot determination of topoisomerase I and cleavable complex in patients with upper gastrointestinal malignancies treated with topotecan. Clin Cancer Res. 1998;4(3):545–57.

    CAS  PubMed  Google Scholar 

  11. Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, et al. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther. 2009;8(7):1878–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato S, Hamaguchi Y, Hasegawa M, Takehara K. Clinical significance of anti-topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Rheumatology. 2001;40(10):1135–40.

    Article  CAS  PubMed  Google Scholar 

  13. Hafian H, Venteo L, Sukhanova A, Nabiev I, Bt L, Pluot M. Immunohistochemical study of DNA topoisomerase I, DNA topoisomerase IIα, p53, and Ki-67 in oral preneoplastic lesions and oral squamous cell carcinomas. Hum Pathol. 2004;35(6):745–51.

    Article  CAS  PubMed  Google Scholar 

  14. Skrzypski M. Quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR) in translational oncology: lung cancer perspective. Lung Cancer. 2008;59(2):147–54.

    Article  PubMed  Google Scholar 

  15. Jepsen ML, Harmsen C, Godbole AA, Nagaraja V, Knudsen BR, Ho Y-P. Specific detection of the cleavage activity of mycobacterial enzymes using a quantum dot based DNA nanosensor. Nanoscale. 2016;8(1):358–64.

    Article  CAS  PubMed  Google Scholar 

  16. Jepsen ML, Ottaviani A, Knudsen BR, Ho Y-P. Quantum dot based DNA nanosensors for amplification-free detection of human topoisomerase I. RSC Adv. 2014;4(5):2491–4.

    Article  CAS  Google Scholar 

  17. Kristoffersen EL, Jorgensen LA, Franch O, Etzerodt M, Frohlich R, Bjergbaek L, et al. Real-time investigation of human topoisomerase I reaction kinetics using an optical sensor: a fast method for drug screening and determination of active enzyme concentrations. Nanoscale. 2015;7(21):9825–34.

    Article  CAS  PubMed  Google Scholar 

  18. Marcussen LB, Jepsen ML, Kristoffersen EL, Franch O, Proszek J, Ho Y-P, et al. DNA-based sensor for real-time measurement of the enzymatic activity of human topoisomerase I. Sensors. 2013;13(4):4017–28.

    Article  CAS  PubMed  Google Scholar 

  19. Gorris HH, Resch-Genger U. Perspectives and challenges of photon-upconversion nanoparticles—part II: bioanalytical applications. Anal Bioanal Chem. 2017;409(25):5875–90.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Liu Y, Liu Q, Li C, Sun L, Li F. Iridium(III) complex-coated nanosystem for ratiometric upconversion luminescence bioimaging of cyanide anions. J Am Chem Soc. 2011;133(39):15276–9.

    Article  CAS  PubMed  Google Scholar 

  21. Guo X, Wu S, Duan N, Wang Z. Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal Bioanal Chem. 2016;408(14):3823–31.

    Article  CAS  PubMed  Google Scholar 

  22. Hua X, You H, Luo P, Tao Z, Chen H, Liu F, et al. Upconversion fluorescence immunoassay for imidaclothiz by magnetic nanoparticle separation. Anal Bioanal Chem. 2017;409(29):6885–92.

    Article  CAS  PubMed  Google Scholar 

  23. Peng J, Xu W, Teoh CL, Han S, Kim B, Samanta A, et al. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J Am Chem Soc. 2015;137(6):2336–42.

    Article  CAS  PubMed  Google Scholar 

  24. Wu S, Duan N, Zhang H, Wang Z. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Anal Bioanal Chem. 2015;407(5):1303–12.

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Chen J-T, Zhu H, Chen X, Yan X-P. One-step solvothermal synthesis of targetable optomagnetic upconversion nanoparticles for in vivo bimodal imaging. Anal Chem. 2013;85(21):10225–31.

    Article  CAS  PubMed  Google Scholar 

  26. Hummers WS, Richard EO. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  27. Beretta GL, Perego P, Zunino F. Targeting topoisomerase I: molecular mechanisms and cellular determinants of response to topoisomerase I inhibitors. Expert Opin Ther Targets. 2008;12(10):1243–56.

    Article  CAS  PubMed  Google Scholar 

  28. Zuccaro L, Tesauro C, Kurkina T, Fiorani P, Yu HK, Knudsen BR, et al. Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano. 2015;9(11):11166–76.

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Li Y, Tang Y, Zhang Y, Zhang Y, Yin T, et al. Hydroxyethyl starch conjugates for improving the stability, pharmacokinetic behavior and antitumor activity of 10-hydroxy camptothecin. Int J Pharm. 2014;471(1–2):234–44.

    Article  CAS  PubMed  Google Scholar 

  30. Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–24.

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Chen J-T, Yan XP. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal Chem. 2013;85:2529–35.

    Article  CAS  PubMed  Google Scholar 

  32. Chen J-L, Yan X-P, Meng K, Wang S-F. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal Chem. 2011;83(22):8787–93.

    Article  CAS  PubMed  Google Scholar 

  33. Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, et al. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem. 2012;84(14):6263–70.

    Article  CAS  PubMed  Google Scholar 

  34. Siu F-M, Che C-M. Persistence of camptothecin analog-topoisomerase I-DNA ternary complexes: a molecular dynamics study. J Am Chem Soc. 2008;130(52):17928–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (Nos. 21435001 and 81401471), the China Postdoctoral Science Foundation (No. 2015 M581306), the Natural Science Foundation of Tianjin (No. 17JCYBJC20700), the Natural Science Foundation of Tianjin Medical University (No. 2014KYQ14), and the National First-class Discipline Program of Food Science and Technology (No. JUFSTR20180301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Ping Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Electronic supplementary material

ESM 1

(PDF 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yan, XP. Analyte-driven self-assembly of graphene oxide sheets onto hydroxycamptothecin-functionalized upconversion nanoparticles for the determination of type I topoisomerases in cell extracts. Anal Bioanal Chem 410, 6761–6769 (2018). https://doi.org/10.1007/s00216-018-1234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1234-0

Keywords

Navigation