Skip to main content
Log in

Instrumental analysis of microplastics—benefits and challenges

  • Feature Article
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

There is a high demand for easy, cheap, comparable, and robust methods for microplastic (MP) analysis, due to the ever-increasing public and scientific interest in (micro-) plastic pollution in the environment. Today, a multitude of methodologies for sampling, sample preparation, and analysis of MPs are in use. This feature article deals with the most prominent detection methods as well as with sampling strategies and sample preparation techniques. Special emphasis is on their benefits and challenges. Thus, spectroscopic methods, coupled with microscopy, require time-consuming sample preparation and extended measurement times, whereas thermo-analytical methods are faster but lack the ability to determine the size distribution in samples. To that effect, most of the described methods are applicable depending on the defined analytical question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eubeler JP, Bernhard M, Knepper TP. Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends Anal Chem. 2010;29(1):84–100. https://doi.org/10.1016/j.trac.2009.09.005.

    Article  CAS  Google Scholar 

  2. Pirc U, Vidmar M, Mozer A, Kržan A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ Sci Pollut Res Int. 2016;23(21):22206–11. https://doi.org/10.1007/s11356-016-7703-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scherer C, Weber A, Lambert S, Wagner M. Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 153–80.

    Chapter  Google Scholar 

  4. Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany. Environ. Sci. Technol. 2015;49(10):6070–6. https://doi.org/10.1021/acs.est.5b00492.

    Article  CAS  PubMed  Google Scholar 

  5. Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler E-M, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102(1):134–41. https://doi.org/10.1016/j.marpolbul.2015.11.043.

    Article  CAS  PubMed  Google Scholar 

  6. Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:17988. https://doi.org/10.1038/srep17988. https://www.nature.com/articles/srep17988#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. https://doi.org/10.1016/j.watres.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  8. plasticeurope.de. Studie zu Produktion, Verarbeitung und Verwertung von Kunststoffen in Deutschland 2015. 2017.

  9. Taylor ML, Gwinnett C, Robinson LF, Woodall LC. Plastic microfibre ingestion by deep-sea organisms. Sci Rep. 2016;6:33997. https://doi.org/10.1038/srep33997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferreira P, Fonte E, Soares ME, Carvalho F, Guilhermino L. Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat Toxicol. 2016;170:89–103. https://doi.org/10.1016/j.aquatox.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt C, Krauth T, Wagner S. Export of plastic debris by rivers into the sea. Environ Sci Technol. 2017; https://doi.org/10.1021/acs.est.7b02368.

    Article  CAS  Google Scholar 

  12. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100(1):82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.

    Article  CAS  PubMed  Google Scholar 

  13. Wesch C, Elert AM, Wörner M, Braun U, Klein R, Paulus M. Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data. Sci Rep. 2017;7:5424. https://doi.org/10.1038/s41598-017-05838-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.

    Article  CAS  PubMed  Google Scholar 

  15. Cincinelli A, Scopetani C, Chelazzi D, Lombardini E, Martellini T, Katsoyiannis A, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere. 2017;175:391–400. https://doi.org/10.1016/j.chemosphere.2017.02.024.

    Article  CAS  PubMed  Google Scholar 

  16. Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100(1):70–81. https://doi.org/10.1016/j.marpolbul.2015.09.027.

    Article  CAS  PubMed  Google Scholar 

  17. Doyle MJ, Watson W, Bowlin NM, Sheavly SB. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar Environ Res. 2011;71(1):41–52. https://doi.org/10.1016/j.marenvres.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

  18. Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10(7):524–37. https://doi.org/10.4319/lom.2012.10.524.

    Article  CAS  Google Scholar 

  19. Klein S, Dimzon IK, Eubeler J, Knepper TP. Analysis, occurrence, and degradation of microplastics in the aqueous environment. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 51–67.

    Chapter  Google Scholar 

  20. Wiesheu AC, Anger PM, Baumann T, Niessner R, Ivleva NP. Raman microspectroscopic analysis of fibers in beverages. Anal Methods. 2016;8(28):5722–5. https://doi.org/10.1039/C6AY01184E.

    Article  CAS  Google Scholar 

  21. Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56(7):1720–39. https://doi.org/10.1002/anie.201606957.

    Article  CAS  Google Scholar 

  22. Ivleva NP, Wiesheu AC, Niessner R. Mikroplastik in aquatischen Ökosystemen. Angew Chem. 2017;129(7):1744–64. https://doi.org/10.1002/ange.201606957.

    Article  Google Scholar 

  23. Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12(5):563–81. https://doi.org/10.1071/EN14205.

    Article  CAS  Google Scholar 

  24. Harrison JP, Ojeda JJ, Romero-González ME. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 2012;416:455–63. https://doi.org/10.1016/j.scitotenv.2011.11.078.

    Article  CAS  PubMed  Google Scholar 

  25. Suaria G, Avio CG, Mineo A, Lattin GL, Magaldi MG, Belmonte G, et al. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters. Sci Rep. 2016;6:37551. https://doi.org/10.1038/srep37551. https://www.nature.com/articles/srep37551#supplementary-information

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11. https://doi.org/10.1016/j.scitotenv.2016.06.017.

    Article  CAS  PubMed  Google Scholar 

  27. Fries ED, Jens; Willmeyer Jana, Nuelle, Marie-Theres; Ebert, Martin; Remy, Dominique. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci: Processes Impacts 2013;15(1949).

  28. Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174(Supplement C):572–84. https://doi.org/10.1016/j.chemosphere.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  29. Duemichen E, Braun U, Senz R, Fabian G, Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. J Chromatogr A. 2014;1354:117–28. https://doi.org/10.1016/j.chroma.2014.05.057.

    Article  CAS  PubMed  Google Scholar 

  30. Dimzon IKD, Knepper TP. Chapter 7- MALDI–TOF MS for characterization of synthetic polymers in aqueous environment. In: Fernandez-Alba AR, editor. Anal. Chem: Elsevier; 2012. p. 307–38.

    Chapter  Google Scholar 

  31. Weidner SM, Trimpin S. Mass spectrometry of synthetic polymers. Anal Chem. 2010;82(12):4811–29. https://doi.org/10.1021/ac101080n.

    Article  CAS  PubMed  Google Scholar 

  32. Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. Sci Total Environ. 2016;566–567(Supplement C):27–33. https://doi.org/10.1016/j.scitotenv.2016.05.090.

    Article  CAS  PubMed  Google Scholar 

  33. Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 2016;113(1):469–76. https://doi.org/10.1016/j.marpolbul.2016.10.049.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the BMBF for funding (FKZ: 02WRS1378D) the framing of the project Microplastics in the water cycle (MiWa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Knepper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huppertsberg, S., Knepper, T.P. Instrumental analysis of microplastics—benefits and challenges. Anal Bioanal Chem 410, 6343–6352 (2018). https://doi.org/10.1007/s00216-018-1210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1210-8

Keywords

Navigation