Skip to main content

Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments


In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62:1596–605.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46:3060–75.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56:1720–39.

    Article  CAS  Google Scholar 

  4. 4.

    Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77:177–82.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93:202–9.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Remy F, Collard F, Gilbert B, Compère P, Eppe G, Lepoint G. When microplastic is not plastic: the ingestion of artificial cellulose fibers by macrofauna living in Seagrass Macrophytodetritus. Environ Sci Technol. 2015;49:11158–66.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Rocha-Santos T, Duarte AC. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends Anal Chem. 2015;65:47–53.

    Article  CAS  Google Scholar 

  9. 9.

    Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassin B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ Chem. 2015;12:539.

    Article  CAS  Google Scholar 

  10. 10.

    Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408:8377–91.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:1–7.

    Article  Google Scholar 

  12. 12.

    Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany. Environ Sci Technol. 2015;49:6070–6.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Imhof HK, Sigl R, Brauer E, Feyl S, Giesemann P, Klink S, et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar Pollut Bull. 2017;116:340–7.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Vianello A, Boldrin A, Guerriero P, Moschino V, Rella R, Sturaro A, et al. Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coast Shelf Sci. 2013;130:54–61.

    Article  CAS  Google Scholar 

  15. 15.

    Harrison JP, Ojeda JJ, Romero-González ME. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 2012;416:455–63.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87:6032–40.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017;51:13689–97.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Frias JPGL, Otero V, Sobral P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res. 2014;95:89–95.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563–81.

    Article  CAS  Google Scholar 

  20. 20.

    Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler EM, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102:134–41.

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–72.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Bergmann M, Wirzberger V, Krumpen T, Lorenz C, Primpke S, Tekman MB, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ Sci Technol. 2017;51:11000–10.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Arch Environ Contam Toxicol. 2017;73:230–9.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 2017;9:1499–511.

    Article  CAS  Google Scholar 

  25. 25.

    Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–84.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Challinor JM. Review: the development and applications of thermally assisted hydrolysis and methylation reactions. J Anal Appl Pyrolysis. 2001;61:3–34.

    Article  CAS  Google Scholar 

  29. 29.

    Challinor JM. A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J Anal Appl Pyrolysis. 1989;16:323–33.

    Article  CAS  Google Scholar 

  30. 30.

    Shadkami F, Helleur R. Recent applications in analytical thermochemolysis. J Anal Appl Pyrolysis. 2010;89:2–16.

    Article  CAS  Google Scholar 

  31. 31.

    Antić VV, Antić MP, Kronimus A, Oing K, Schwarzbauer J. Quantitative determination of poly(vinylpyrrolidone) by continuous-flow off-line pyrolysis-GC/MS. J Anal Appl Pyrolysis. 2011;90:93–9.

    Article  CAS  Google Scholar 

  32. 32.

    de Leeuw JW, de Leer EWB, Sinninghe Damsté JS, Schuyl PJW. Screening of anthropogenic compounds in polluted sediments and soils by flash evaporation/pyrolysis gas chromatography-mass spectrometry. Anal Chem. 1986;58:1852–7.

    Article  Google Scholar 

  33. 33.

    Fabbri D, Tartari D, Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry. Anal Chim Acta. 2000;413:3–11.

    Article  CAS  Google Scholar 

  34. 34.

    Fabbri D. Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna lagoon. J Anal Appl Pyrolysis. 2001;58–59:361–70.

    Article  Google Scholar 

  35. 35.

    Fabbri D, Trombini C, Vassura I. Analysis of polystyrene in polluted sediments by pyrolysis-gas chromatography-mass spectrometry. J Chromatogr Sci. 1998;36:600–4.

    Article  CAS  Google Scholar 

  36. 36.

    Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15:1949–56.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography−mass spectrometry. Environ Sci Technol. 2017;51:5052–60.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231:1256–64.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10:524–37.

    Article  CAS  Google Scholar 

  42. 42.

    Tsuge S, Ohtani H, Watanabe C. Pyrolysis—GC/MS data book of synthetic polymers. 1st ed. Oxford: Elsevier B.V.; 2011.

    Google Scholar 

  43. 43.

    Mandelkern L, Alamo RG. Polyethylene, linear high-density. In: Mark JE, editor. Polymer data handbook. Oxford: Oxford University Press; 1991. p. 493–507.

    Google Scholar 

  44. 44.

    Beyler CL, Hirschler MM. Thermal decomposition of polymers. In: Beyler CL, Custer RLP, Walton WD, John MJW, Drysdale D, John RJH, et al., editors. SFPE handbook of fire protection engineering, 3rd ed. National Fire Protection Association; 2005. p. 110–31.

  45. 45.

    Narita S, Ichinohe S, Enomoto S. Infrared spectrum of polyvinyl chloride. J Polym Sci. 1959;37:273–80.

    Article  CAS  Google Scholar 

  46. 46.

    Stromberg RR, Straus S, Achhammer BG. Infrared spectra of thermally degraded poly(vinyl chloride). J Res Natl Bur Stand (1934). 1958;60:147–52.

    Article  CAS  Google Scholar 

  47. 47.

    Tabb DL, Koenig JL. Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride). Macromolecules. 1975;8:929–34.

    Article  CAS  Google Scholar 

  48. 48.

    González N, Fernández-Berridi MJ. Application of Fourier transform infrared spectroscopy in the study of interactions between PVC and plasticizers: PVC/plasticizer compatibility versus chemical structure of plasticizer. J Appl Polym Sci. 2006;101:1731–7.

    Article  CAS  Google Scholar 

  49. 49.

    Ploeger R, Scalarone D, Chiantore O. The characterization of commercial artists’ alkyd paints. J Cult Herit. 2008;9:412–9.

    Article  Google Scholar 

  50. 50.

    Duce C, Della Porta V, Tiné MR, Spepi A, Ghezzi L, Colombini MP, et al. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:214–21.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Gunasekaran S, Anbalagan G, Pandi S. Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc. 2006;37:892–9.

    Article  CAS  Google Scholar 

  52. 52.

    Ziêba-Palus J, Milczarek JM, Koscielniak P. Application of infrared spectroscopy and pyrolysis-gas chromatography – mass spectrometry to the analysis of automobile paint samples. Chem Anal. 2008;53:109–21.

    Google Scholar 

  53. 53.

    Hummel DO, Scholl F. Atlas der Polymer- und Kunststoffanalyse, Band 2 Kunststoff, Fasern, Kautschuk, Harze, Ausgangs- und Hilfsstoffe, Abbauprodukte - Teil b/I. 2. VCH, Weinheim; 1988.

  54. 54.

    Hummel DO, Scholl F. Atlas of polymer and plastics analysis, volume 2 plastics, fibres, rubbers, resins; starting and auxiliary materials, degradation products, part a/I. 2. VCH, Weinheim; 1984.

  55. 55.

    Huang CK, Kerr PF. Infrared study of the carbonate minerals. Am Mineral. 1960;45:311–24.

    CAS  Google Scholar 

  56. 56.

    Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, et al. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C. 2017;79:930–49.

    Article  CAS  Google Scholar 

  57. 57.

    Learner T. The analysis of synthetic paints by pyrolysis-gas chromatography-mass spectrometry (PyGCMS). Stud Conserv. 2001;46:225–41.

    CAS  Google Scholar 

  58. 58.

    Challinor JM. Structure determination of alkyd resins by simultaneous pyrolysis methylation. J Anal Appl Pyrolysis. 1991;18:233–44.

    Article  CAS  Google Scholar 

  59. 59.

    Wei S, Pintus V, Schreiner M. A comparison study of alkyd resin used in art works by Py-GC/MS and GC/MS: the influence of aging. J Anal Appl Pyrolysis. 2013;104:441–7.

    Article  CAS  Google Scholar 

  60. 60.

    Koopmans RJ, van der Linden R, Vansant EF. Quantitative determination of the vinylacetate content in ethylene vinyl-acetate copolymers—a critical review. Polym Eng Sci. 1982;22:878–82.

    Article  CAS  Google Scholar 

  61. 61.

    Rimez B, Rahier H, Van Assche G, Artoos T, Biesemans M, Van Mele B. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), part I: experimental study of the degradation mechanism. Polym Degrad Stab. 2008;93:800–10.

    Article  CAS  Google Scholar 

  62. 62.

    Comnea-Stancu IR, Wieland K, Ramer G, Schwaighofer A, Lendl B. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl Spectrosc. 2017;71:939–50.

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Baran A, Fiedler A, Schulz H, Baranska M. In situ Raman and IR spectroscopic analysis of indigo dye. Anal Methods. 2010;2:1372–6.

    Article  CAS  Google Scholar 

  64. 64.

    Ibrahim M, El-Nahass MM, Kamel MA, El-Barbary AA, Wagner BD, El-Mansy MAM. On the spectroscopic analyses of thioindigo dye. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2013;113:332–6.

    Article  CAS  Google Scholar 

  65. 65.

    Fabbri D, Helleur R. Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J Anal Appl Pyrolysis. 1999;49:277–93.

    Article  CAS  Google Scholar 

  66. 66.

    Schwarzinger C, Tanczos I, Schmidt H. Levoglucosan, cellobiose and their acetates as model compounds for the thermally assisted hydrolysis and methylation of cellulose and cellulose acetate. J Anal Appl Pyrolysis. 2002;62:179–96.

    Article  CAS  Google Scholar 

Download references


This work was part of the Leibniz Competition project “Microplastics as vector for microbial populations in the ecosystem of the Baltic Sea (MikrOMIK),” funded by the German Leibniz Association (grant number SAW-2014-IOW-2). Parts of this study were funded by the German Federal Ministry of Education and Research (BMBF 03F0734D) in the joint research project BASEMAN (JPI-Oceans microplastics projects). Furthermore, Andrea Käppler is thankful for financial support by the BONUS MICROPOLL project funded jointly by the EU and BMBF (03F0775A).

The authors want to thank Rica Wegner, Nicole Stollberg, and Oliver Biniasch (all formerly IOW) for the extraction and isolation of the particles and fibers. The technical assistance of Oliver Voigt (IPF) during ATR-FTIR measurements is also acknowledged.

Author information



Corresponding authors

Correspondence to Andrea Käppler or Marten Fischer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material


(PDF 392 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Käppler, A., Fischer, M., Scholz-Böttcher, B.M. et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal Bioanal Chem 410, 5313–5327 (2018).

Download citation


  • Microplastics
  • py-GCMS
  • Environmental samples
  • Comparison
  • Validation