Skip to main content
Log in

In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

γ-Glutamyl transpeptidase (GGT), overexpressed in various cancer cells, has been perceived as a latent tumor biomarker. Thus, developing near-infrared (NIR) fluorescent GGT probes is highly desired for in vivo tumor imaging and studies. To our knowledge, however, such a GGT probe is still rare. Herein, we construct a new GGT-activatable NIR fluorescent probe HCAGlu by incorporating γ-glutamyl group as a recognition unit directly into a NIR hemicyanine fluorophore. HCAGlu exhibits a highly sensitive and selective NIR fluorescence off-on response to GGT. The probe has been applied to cell and histological section imaging, which demonstrates the ability of HCAGlu in distinguishing different GGT-expression levels in situ in biological samples. Notably, in vivo fluorescence imaging in tumor-bearing mice has been performed, verifying that probe HCAGlu can rapidly produce a distinct fluorescence signal in the tumor site via both intravenous and intratumoral injections. The simplicity and excellent performance of HCAGlu make it of high potential in studying the physiological function of GGT in vivo.

A near-infrared fluorescent probe for imaging γ-glutamyl transpeptidase in biological samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Roda A, Michelini E, Caliceti C, Guardigli M, Mirasoli M, Simoni P. Advanced bioanalytics for precision medicine. Anal Bioanal Chem. 2018;410:669–77.

    Article  CAS  PubMed  Google Scholar 

  2. Turkowyd B, Virant D, Endesfelder U. From single molecules to life: microscopy at the nanoscale. Anal Bioanal Chem. 2016;408:6885–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao M, Yu FB, Lv CJ, Choo J, Chen LX. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev. 2017;46:2237–71.

    Article  CAS  PubMed  Google Scholar 

  5. Gorris HH, Resch-Genger U. Perspectives and challenges of photon-upconversion nanoparticles-part II: bioanalytical applications. Anal Bioanal Chem. 2017;409:5875–90.

    Article  CAS  PubMed  Google Scholar 

  6. Guo ZQ, Park S, Yoon JY, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43:16–29.

    Article  PubMed  Google Scholar 

  7. Zeng RJ, Gao Q, Cheng FM, Yang YS, Zhang PS, Chen S, et al. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells. Anal Bioanal Chem. 2018;410:2001–9.

    Article  CAS  PubMed  Google Scholar 

  8. Dang Q, Gao HF, Li ZJ, Qi HL, Gao Q, Zhang CX. Simple and sensitive electrogenerated chemiluminescence peptide-based biosensor for detection of matrix metalloproteinase 2 released from living cells. Anal Bioanal Chem. 2016;408:7067–75.

    Article  CAS  PubMed  Google Scholar 

  9. Urano Y, Sakabe M, Kosaka N, Ogawa M, Mitsunaga M, Asanuma D, et al. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase–activated fluorescent probe. Sci Transl Med. 2011;3:110–9.

    Article  CAS  Google Scholar 

  10. Li LH, Shi W, Wang Z, Gong QY, Ma HM. Sensitive fluorescence probe with long analytical wavelengths for γ-glutamyl transpeptidase detection in human serum and living cells. Anal Chem. 2015;87:8353–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang PS, Jiang XF, Nie XZ, Huang Y, Zeng F, Xia XT, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GGT) level in vivo. Biomaterials. 2016;80:46–56.

    Article  CAS  PubMed  Google Scholar 

  12. Hou XF, Zeng F, Wu SZ. A fluorescent assay for γ-glutamyltranspeptidase via aggregation induced emission and its applications in real samples. Biosens Bioelectron. 2016;85:317–23.

    Article  CAS  PubMed  Google Scholar 

  13. Tong HJ, Zheng YJ, Zhou L, Li XM, Qian R, Wang R, et al. Enzymatic cleavage and subsequent facile intramolecular transcyclization for in situ fluorescence detection of γ-glutamyltranspetidase activities. Anal Chem. 2016;88:10816–20.

    Article  CAS  PubMed  Google Scholar 

  14. Hai ZJ, Wu JJ, Wang L, Xu JC, Zhang HF, Liang GL. Bioluminescence sensing of γ-glutamyltranspeptidase activity in vitro and in vivo. Anal Chem. 2017;89:7017–21.

    Article  CAS  PubMed  Google Scholar 

  15. Park S, Lim SY, Bae SM, Kim SY, Myung SJ, Kim HJ. Indocyanine-based activatable fluorescence turn-on probe for γ-glutamyltranspeptidase and its application to the mouse model of colon cancer. ACS Sens. 2016;1:579–83.

    Article  CAS  Google Scholar 

  16. Chiba M, Ichikawa Y, Kamiya M, Komatsu T, Ueno T, Hanaoka K, et al. An activatable photosensitizer targeted to γ-glutamyltranspeptidase. Angew Chem Int Ed. 2017;56:10418–22.

    Article  CAS  Google Scholar 

  17. Zhang H, Wang K, Xuan XP, Lv QZ, Nie YM, Guo HM. Cancer cell-targeted two-photon fluorescence probe for the real-time ratiometric imaging of DNA damage. Chem Commun. 2016;52:6308–11.

    Article  CAS  Google Scholar 

  18. Wang P, Zhang J, Liu HW, Hu XX, Feng LL, Yin X, et al. An efficient two-photon fluorescent probe for measuring γ-glutamyltranspeptidase activity during the oxidative stress process in tumor cells and tissues. Analyst. 2017;142:1813–20.

    Article  CAS  PubMed  Google Scholar 

  19. Li LH, Shi W, Wu XF, Gong QY, Li XH, Ma HM. Monitoring γ-glutamyl transpeptidase activity and evaluating its inhibitors by a water-soluble near-infrared fluorescent probe. Biosens Bioelectron. 2016;81:395–400.

    Article  CAS  PubMed  Google Scholar 

  20. Luo ZL, Feng LD, An RB, Duan GF, Yan RQ, Shi H, et al. Activatable near-infrared probe for fluorescence imaging of g-glutamyl transpeptidase in tumor cells and in vivo. Chem Eur J. 2017;23:14778–85.

    Article  CAS  PubMed  Google Scholar 

  21. Luo ZL, Huang Z, Li K, Sun YD, Lin JG, Ye DJ, et al. Targeted delivery of a γ-glutamyl transpeptidase activatable near-infrared-fluorescent probe for selective cancer imaging. Anal Chem. 2018;90:2875–83.

    Article  CAS  PubMed  Google Scholar 

  22. He XY, Li LH, Fang Y, Shi W, Li XH, Ma HM. In vivo imaging of leucine aminopeptidase activity in drug-induced liver injury and liver cancer via a near-infrared fluorescent probe. Chem Sci. 2017;8:3479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith TK, Ikeda Y, Fujii J, Taniguchi N, Meister A. Different sites of acivicin binding and inactivation of γ-glutamyl transpeptidases. Proc Natl Acad Sci U S A. 1995;92:2360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daubeuf S, Leroy P, Paolicchi A, Pompella P, Wellman M, Galteau MM, et al. Enhanced resistance of HeLa cells to cisplatin by overexpression of γ-glutamyltransferase. Biochem Pharmacol. 2002;64:207–16.

    Article  CAS  PubMed  Google Scholar 

  25. Hanigan MH, Ricketts WA. Extracellular glutathione is a source of cysteine for cells that express gamma-glutamyl transpeptidase. Biochemistry. 1993;32:6302–6.

    Article  CAS  PubMed  Google Scholar 

  26. Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, OU CN, et al. Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci U S A. 1996;93:7923–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We are grateful for the financial support from the NSF of China (Nos. 21675159, 21621062, 21535009, and 21435007), the 973 Program (Nos. 2015CB932001 and 2015CB856301), the Chinese Academy of Science (XDB14030102), and Youth Innovation Promotion Association of CAS (2016027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Shi or Huimin Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Research involving animals

All animal and tissue experiments are approved by the Beijing Association on Laboratory Animal Care and the Association for Assessment and Accreditation of Laboratory Animal Care, and performed according to their guidelines.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Electronic supplementary material

ESM 1

(PDF 2022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shi, W., Wu, X. et al. In vivo tumor imaging by a γ-glutamyl transpeptidase-activatable near-infrared fluorescent probe. Anal Bioanal Chem 410, 6771–6777 (2018). https://doi.org/10.1007/s00216-018-1181-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1181-9

Keywords

Navigation