Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 24, pp 6067–6077 | Cite as

Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials

  • Tong Zhang
  • Matthew J. Gaffrey
  • Brian D. Thrall
  • Wei-Jun QianEmail author
Review
Part of the following topical collections:
  1. Analytical Developments in Advancing Safety in Nanotechnology

Abstract

The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials.

Graphical abstract

Keywords

Engineered nanomaterials Proteomics Post-translational modifications Redox proteomics Thiol Oxidative stress 

Notes

Funding information

Portions of the work were supported by the National Institutes of Health Grants U01ES027292, a member of the Nanotechnology Health Implications Research (NHIR) consortium, and P41GM103493. The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, a national scientific user facility sponsored by the Department of Energy under Contract DE-AC05-76RL0 1830.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2013;31(1):61–2.CrossRefGoogle Scholar
  2. 2.
    Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: an untapped resource for food packaging. Front Microbiol. 2017;8:22.Google Scholar
  3. 3.
    Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine. Genes Dev. 2013;27(22):2397–408.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Carabineiro SAC. Applications of gold nanoparticles in nanomedicine: recent advances in vaccines. Molecules. 2017;22(5):16.CrossRefGoogle Scholar
  6. 6.
    Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12:5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lin H, Ho M, Tsen C, Huang C, Wu C, Huang Y, et al. From the cover: comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood-brain barrier. Toxicol Sci. 2017;158(1):151–63.CrossRefPubMedGoogle Scholar
  8. 8.
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deng J, Gao C. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity. Nanotechnology. 2016;27(41):412002.CrossRefPubMedGoogle Scholar
  10. 10.
    Bertoli F, Garry D, Monopoli MP, Salvati A, Dawson KA. The intracellular destiny of the protein corona: a study on its cellular internalization and evolution. ACS Nano. 2016;10(11):10471–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Vilanova O, Mittag JJ, Kelly PM, Milani S, Dawson KA, Radler JO, et al. Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano. 2016;10(12):10842–50.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Choi K, Riviere JE, Monteiro-Riviere NA. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology. 2017;11(1):64–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang H, Burnum K, Luna ML, Petritis BO, Kim JS, Qian WJ, et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics. 2011;11(23):4569–77.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shannahan JH, Lai XY, Ke PC, Podila R, Brown JM, Witzmann FA. Silver nanoparticle protein corona composition in cell culture media. PLoS One. 2013;8(9):10.CrossRefGoogle Scholar
  15. 15.
    Juling S, Niedzwiecka A, Bohmert L, Lichtenstein D, Selve S, Braeuning A, et al. Protein corona analysis of silver nanoparticles links to their cellular effects. J Proteome Res. 2017;16(11):4020–34.CrossRefPubMedGoogle Scholar
  16. 16.
    Ashby J, Pan S, Zhong W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces. 2014;6(17):15412–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ashby J, Schachermeyer S, Pan S, Zhong W. Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal Chem. 2013;85(15):7494–501.CrossRefPubMedGoogle Scholar
  18. 18.
    Shannahan JH, Podila R, Brown JM. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int J Nanomedicine. 2015;10:6509–21.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano. 2012;6(5):4349–68.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meng H, Xia T, George S, Nel AE. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano. 2009;3(7):1620–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nano. 2015;5(3):1163–80.Google Scholar
  22. 22.
    Kodali V, Thrall BD. Oxidative stress and nanomaterial-cellular interactions. In: Studies on experimental toxicology and pharmacology. Humana Press; 2015. p. 347–67.Google Scholar
  23. 23.
    Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano. 2014;8(3):2161–75.CrossRefPubMedGoogle Scholar
  24. 24.
    Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK, Camp DG, et al. Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress. ACS Nano. 2016;10(1):524–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, et al. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano. 2013;7(8):6997–7010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res. 2012;745(1–2):84–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao Y, Li L, Zhang P, Shen W, Liu J, Yang F, et al. Differential regulation of gene and protein expression by zinc oxide nanoparticles in hen's ovarian granulosa cells: specific roles of nanoparticles. PLoS One. 2015;10(10):e0140499.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Costa PM, Gosens I, Williams A, Farcal L, Pantano D, Brown DM, et al. Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following short-term inhalation exposure to copper oxide nanoparticles. J Appl Toxicol. 2018;38(3):385–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Bajak E, Fabbri M, Ponti J, Gioria S, Ojea-Jimenez I, Collotta A, et al. Changes in Caco-2 cells transcriptome profiles upon exposure to gold nanoparticles. Toxicol Lett. 2015;233(2):187–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Frohlich E. Role of omics techniques in the toxicity testing of nanoparticles. J Nanobiotechnology. 2017;15(1):84.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Driessen MD, Mues S, Vennemann A, Hellack B, Bannuscher A, Vimalakanthan V, et al. Proteomic analysis of protein carbonylation: a useful tool to unravel nanoparticle toxicity mechanisms. Part Fibre Toxicol. 2015;12:36.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Duan J, Gaffrey MJ, Qian WJ. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Mol BioSyst. 2017;13(5):816–29.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55.CrossRefPubMedGoogle Scholar
  34. 34.
    Gao W. Analysis of protein changes using two-dimensional difference gel electrophoresis. Methods Mol Biol. 2014;1105:17–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Gioria S, Chassaigne H, Carpi D, Parracino A, Meschini S, Barboro P, et al. A proteomic approach to investigate AuNPs effects in Balb/3T3 cells. Toxicol Lett. 2014;228(2):111–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Ge Y, Bruno M, Wallace K, Winnik W, Prasad RY. Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide. Proteomics. 2011;11(12):2406–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Sund J, Palomaki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteome. 2014;108:469–83.CrossRefGoogle Scholar
  38. 38.
    Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Y, Yang F, Gritsenko MA, Clauss T, Liu T, Shen Y, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11(10):2019–26.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376–86.CrossRefPubMedGoogle Scholar
  41. 41.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3(12):1154–69.CrossRefPubMedGoogle Scholar
  42. 42.
    Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem. 2003;75(8):1895–904.CrossRefPubMedGoogle Scholar
  43. 43.
    Juang Y, Lai B, Chien H, Ho M, Cheng T, Lai C. Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach. Rapid Commun Mass Spectrom. 2014;28(8):974–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Nahnsen S, Bielow C, Reinert K, Kohlbacher O. Tools for label-free peptide quantification. Mol Cell Proteomics. 2013;12(3):549–56.CrossRefPubMedGoogle Scholar
  45. 45.
    Poirier I, Kuhn L, Demortiere A, Mirvaux B, Hammann P, Chicher J, et al. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. J Proteome. 2016;148:213–27.CrossRefGoogle Scholar
  46. 46.
    Okoturo-Evans O, Dybowska A, Valsami-Jones E, Cupitt J, Gierula M, Boobis AR, et al. Elucidation of toxicity pathways in lung epithelial cells induced by silicon dioxide nanoparticles. PLoS One. 2013;8(9):e72363.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao M, Li H, Bu X, Lei C, Fang Q, Hu Z. Quantitative proteomic analysis of cellular resistance to the nanoparticle abraxane. ACS Nano. 2015;9(10):10099–112.CrossRefPubMedGoogle Scholar
  48. 48.
    Georgantzopoulou A, Serchi T, Cambier S, Leclercq CC, Renaut J, Shao J, et al. Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol. 2016;13:9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Su C, Chen T, Chang C, Chuang K, Wu C, Liu W, et al. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen provoked mice. Int J Nanomedicine. 2013;8:2783–99.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Oberemm A, Hansen U, Bohmert L, Meckert C, Braeuning A, Thunemann AF, et al. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver. J Appl Toxicol. 2016;36(3):404–13.CrossRefPubMedGoogle Scholar
  51. 51.
    Gioria S, Vicente JL, Barboro P, La Spina R, Tomasi G, Urban P, et al. A combined proteomics and metabolomics approach to assess the effects of gold nanoparticles in vitro. Nanotoxicology. 2016;10(6):736–48.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ng CT, Yung LYL, Swa HLF, Poh RWY, Gunaratne J, Bay BH. Altered protein expression profile associated with phenotypic changes in lung fibroblasts co-cultured with gold nanoparticle-treated small airway epithelial cells. Biomaterials. 2015;39:31–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Tarasova NK, Gallud A, Ytterberg AJ, Chernobrovkin A, Aranzaes JR, Astruc D, et al. Cytotoxic and proinflammatory effects of metal-based nanoparticles on THP-1 monocytes characterized by combined proteomics approaches. J Proteome Res. 2017;16(2):689–97.CrossRefPubMedGoogle Scholar
  54. 54.
    Edelmann MJ, Shack LA, Naske CD, Walters KB, Nanduri B. SILAC-based quantitative proteomic analysis of human lung cell response to copper oxide nanoparticles. PLoS One. 2014;9(12):e114390.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Triboulet S, Aude-Garcia C, Carriere M, Diemer H, Proamer F, Habert A, et al. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses. Mol Cell Proteomics. 2013;12(11):3108–22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bai K, Chuang K, Chen J, Hua H, Shen Y, Liao W, et al. Investigation into the pulmonary inflammopathology of exposure to nickel oxide nanoparticles in mice. Nanomedicine. 2017;xx:-1–11.Google Scholar
  57. 57.
    Fu L, Yan X, Ruan X, Lin J, Wang Y. Differential protein expression of Caco-2 cells treated with selenium nanoparticles compared with sodium selenite and selenomethionine. Nanoscale Res Lett. 2014;9:8.CrossRefGoogle Scholar
  58. 58.
    Dalzon B, Aude-Garcia C, Collin-Faure V, Diemer H, Beal D, Dussert F, et al. Differential proteomics highlights macrophage-specific responses to amorphous silica nanoparticles. Nano. 2017;9(27):9641–58.Google Scholar
  59. 59.
    Armand L, Biola-Clier M, Bobyk L, Collin-Faure V, Diemer H, Strub JM, et al. Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: a proteomic view. J Proteome. 2016;134:163–73.CrossRefGoogle Scholar
  60. 60.
    Triboulet S, Aude-Garcia C, Armand L, Collin-Faure V, Chevallet M, Diemer H, et al. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages. PLoS One. 2015;10(4):e0124496.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Doll S, Burlingame AL. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol. 2015;10(1):63–71.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang T, Chen S, Harmon AC. Protein phosphorylation in stomatal movement. Plant Signal Behav. 2014;9(11):e972845.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gil J, Ramirez-Torres A, Encarnacion-Guevara S. Lysine acetylation and cancer: a proteomics perspective. J Proteome. 2017;150:297–309.CrossRefGoogle Scholar
  64. 64.
    Banazadeh A, Veillon L, Wooding KM, Zabet-moghaddam M, Mechref Y. Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis. 2017;38(1):162–89.CrossRefPubMedGoogle Scholar
  65. 65.
    Marslin G, Sheeba CJ, Franklin G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci. 2017;8:8.CrossRefGoogle Scholar
  66. 66.
    Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science. 2016;311(5761):622–7.CrossRefGoogle Scholar
  67. 67.
    Guo J, Gaffrey MJ, Su D, Liu T, Camp DG, Smith RD, et al. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat Protoc. 2014;9(1):64–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE. 2001;2001(86):pl1.PubMedGoogle Scholar
  69. 69.
    Derakhshan B, Wille PC, Gross SS. Unbiased identification of cysteine S-nitrosylation sites on proteins. Nat Protoc. 2007;2(7):1685–91.CrossRefPubMedGoogle Scholar
  70. 70.
    Murray CI, Van Eyk JE. Chasing cysteine oxidative modifications proteomic tools for characterizing cysteine redox status. Circ Cardiovasc Genet. 2012;5(5):591.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu T, Qian WJ, Strittmatter EF, Camp DG, Anderson GA, Thrall BD, et al. High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem. 2004;76(18):5345–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M. Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis. 2015;30(1):59–66.CrossRefPubMedGoogle Scholar
  73. 73.
    Sisler JD, Pirela SV, Shaffer J, Mihalchik AL, Chisholm WP, Andrew ME, et al. Toxicological assessment of CoO and La2O3 metal oxide nanoparticles in human small airway epithelial cells. Toxicol Sci. 2015;150(2):418–28.CrossRefGoogle Scholar
  74. 74.
    Chan CY, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics. 2016;13(4):421–33.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang G, Guo Y, Yang G, Yang L, Ma X, Wang K, et al. Mitochondria-mediated protein regulation mechanism of polymorphs-dependent inhibition of nanoselenium on cancer cells. Sci Rep. 2016;6:14.CrossRefGoogle Scholar
  76. 76.
    Madian AG, Regnier FE. Proteomic identification of carbonylated proteins and their oxidation sites. J Proteome Res. 2010;9(8):3766–80.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rainville LC, Carolan D, Varela AC, Doyle H, Sheehan D. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst. 2014;139(7):1678–86.CrossRefPubMedGoogle Scholar
  78. 78.
    Petrache Voicu SN, Dinu D, Sima C, Hermenean A, Ardelean A, Codrici E, et al. Silica nanoparticles induce oxidative stress and autophagy but not apoptosis in the MRC-5 cell line. Int J Mol Sci. 2015;16(12):29398–416.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Arya A, Sethy NK, Singh SK, Das M, Bhargava K. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation. Int J Nanomedicine. 2013;8:4507–19.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu Rev Public Health. 2009;30:137–50.CrossRefPubMedGoogle Scholar
  81. 81.
    Pillai S, Behra R, Nestler H, Suter MJF, Sigg L, Schirmer K. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A. 2014;111(9):3490–5.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Strehl C. Nanoparticles and the immune system. Ann Rheum Dis. 2016;75:13.Google Scholar
  83. 83.
    Jena NR. DNA damage by reactive species: mechanisms, mutation and repair. J Biosci. 2012;37(3):503–17.CrossRefPubMedGoogle Scholar
  84. 84.
    Wilson C, Gonzalez-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci. 2015;9:10.CrossRefGoogle Scholar
  85. 85.
    Xu FL, Piett C, Farkas S, Qazzaz M, Syed NI. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain. 2013;6:15.CrossRefGoogle Scholar
  86. 86.
    Matysiak M, Kapka-Skrzypczak L, Brzoska K, Gutleb AC, Kruszewski M. Proteomic approach to nanotoxicity. J Proteome. 2016;137:35–44.CrossRefGoogle Scholar
  87. 87.
    Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166(3):755–65.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534(7605):55–62.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Biological Sciences DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations