Skip to main content
Log in

Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) tend to adsorb matrix molecules like proteins and lipids incubated with biological fluids, forming a biological corona. While the formation and functions of protein corona have been studied extensively, little attention has been paid to lipid adsorption on NPs. However, lipids are also abundantly present in biological fluids and play important roles in processes like cell signaling and angiogenesis. Therefore, in this study, we established the analytical procedure for study of lipid adsorption on three different types of NPs in two matrices: human serum and heavy cream, using nanoflow liquid chromatography-mass spectrometry (nanoflowLC-MS). Serum was chosen to represent the common environment the NPs would be present once entering human body, and heavy cream was the representative food matrix NPs may be added to improve the color or taste. Steps of liquid-liquid extraction were established and optimized to achieve maximum recovery of the adsorbed, standard lipids from the NPs. Then, the LC-MS/MS method was developed to attain base-line separation of the standard lipids that represent the major lipid classes. At last, the lipid adsorption profiles of the three NPs were compared. We found that the lipid adsorption profile on the same type of NP was significantly different between the two matrices. The established method will help us investigate lipid adsorption on additional NPs and reveal how it could be affected by the physiochemical properties of NPs and the presence of proteins and other components in the biological matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;87:1181–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Love SA, Maurer-Jones MA, Thompson JW, Tu-Shen L, Haynes CL. Assessing nanoparticles toxicity. Annu Rev Anal Chem. 2012;5:181–205.

    Article  CAS  Google Scholar 

  3. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–86.

    Article  CAS  PubMed  Google Scholar 

  4. Lynch I, Dawson KA. Protein–nanoparticle interactions. Nano Today. 2008;3:40–7.

    Article  CAS  Google Scholar 

  5. Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20:455101.

    Article  CAS  PubMed  Google Scholar 

  6. Ashby J, Pan S, Zhong W. Size and surface functionalization of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl Mater Interfaces. 2014;6:15412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ashby J, Schachermeyer S, Pan S, Zhong W. Dissociation-based screening of nanoparticle–protein interaction via flow field-flow fractionation. Anal Chem. 2013;85(15):7494–501.

    Article  CAS  PubMed  Google Scholar 

  8. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivobiological impacts of nanoparticles. J Am Chem Soc. 2011;133:2525–34.

    Article  CAS  PubMed  Google Scholar 

  9. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 2009;5:106–17.

    Article  CAS  PubMed  Google Scholar 

  10. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–81.

    Article  CAS  PubMed  Google Scholar 

  11. Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010;28:1300–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Milani S, Baldelli BF, Pitek AS, Dawson KA, Rädler J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano. 2012;6:2532–41.

    Article  CAS  PubMed  Google Scholar 

  13. Martel J, Young D, Young A, Wu CY, Chen CD, Yu JS, et al. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry. Anal Biochem. 2011;418:111–25.

    Article  CAS  PubMed  Google Scholar 

  14. Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano. 2011;5:7155–67.

    Article  CAS  PubMed  Google Scholar 

  15. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  CAS  PubMed  Google Scholar 

  16. Divecha N, Irvine RF. Phospholipid signaling. Cell. 1995;80:269–78.

    Article  CAS  PubMed  Google Scholar 

  17. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004;73:321–35.

    Article  CAS  PubMed  Google Scholar 

  19. Graessler J, Schwudke D, Schwarz PE, Herzog R, Shevchenko A, Bornstein SR. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS One. 2009;4(7):e6261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu C, Kong H, Qu F, Li Y, Yu Z, Gao P, et al. Application of plasma lipidomics in studying the response of patients with essential hypertension to antihypertensive drug therapy. Mol BioSyst. 2011;7(12):3271–9.

    Article  CAS  PubMed  Google Scholar 

  21. Scherer M, Montoliu I, Qanadli SD, Collino S, Rezzi S, Kussmann M, et al. Blood plasma lipidomic signature of epicardial fat in healthy obese women. Obesity. 2015;23:130–7.

    Article  CAS  PubMed  Google Scholar 

  22. Kien CL, Bunn JY, Poynter ME, Stevens R, Bain J, Ikayeva O, et al. A lipidomics analysis of the relationship between dietary fatty acid composition and insulin sensitivity in young adults. Diabetes. 2013;62:1054–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tonks KT, Coster AC, Christopher MJ, Chaudhuri R, Xu A, Gagnon-Bartsch J, et al. Skeletal muscle and plasma lipidomic signatures of insulin resistance and overweight/obesity in humans. Obesity. 2016;24:908–16.

    Article  CAS  PubMed  Google Scholar 

  24. Salvayre R, Auge N, Benoist H, Negre-Salvayre A. Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta. 2002;30:213–21.

    Article  Google Scholar 

  25. Leonarduzzi G, Arkan MC, Başağa H, Chiarpotto E, Sevanian A, Poli G. Lipid oxidation products in cell signaling. Free Radic Biol Med. 2000;28:1370–8.

    Article  CAS  PubMed  Google Scholar 

  26. Heller DN, Murphy CM, Cotter RJ, Fenselau C, Uy OM. Constant neutral loss scanning for the characterization of bacterial phospholipids desorbed by fast atom bombardment. Anal Chem. 1988;60:2787–91.

    Article  CAS  PubMed  Google Scholar 

  27. Völlmin JA. Separation and identification of urinary steroids on glass capillary columns in a combination of gas chromatograph and mass spectrometer. Chromatographia. 1970;3:238–41.

    Article  Google Scholar 

  28. Bang DY, Kang D, Moon MH. Nanoflow liquid chromatography/tandem mass spectrometry for the characterization of intact phosphatidylcholine lipids: soybean, bovine brain, and liver. J Chromatogr A. 2006;1104:222–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bang DY, Ahn E, Moon MH. Shotgun analysis of phospholipids from mouse liver and brain by nanoflow liquid chromatography/tandem mass spectrometry. J Chromatogr B. 2007;852:268–77.

    Article  CAS  Google Scholar 

  30. Bang DY, Lim S, Moon MH. Effect of ionization modifiers on the simultaneous analysis of all classes of phospholipids by nanoflow liquid chromatography/tandem mass spectrometry in negative ion mode. J Chromatogr A. 2012;1240:69–76.

    Article  CAS  PubMed  Google Scholar 

  31. Byeon SK, Lee JC, Chung BC, Seo HS, Moon MH. High-throughput and rapid quantification of lipids by nanoflow UPLC-ESI-MS/MS: application to the hepatic lipids of rabbits with non-alcoholic liver disease. Anal Bioanal Chem. 2016;408:4975–85.

    Article  CAS  PubMed  Google Scholar 

  32. Lee JY, Min H, Moon MH. Simultaneous profiling of lysophospholipids and phospholipids from human plasma by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2011;400:2953–61.

    Article  CAS  PubMed  Google Scholar 

  33. Byeon SK, Kim J, Lee JY, Chung BC, Seo HS, Moon MH. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry. J Chromatogr A. 2015;1405:140–8.

    Article  CAS  PubMed  Google Scholar 

  34. Beltran-Huarac J, Zhang Z, Pyrgiotakis G, Deloid G, Vaze N, Demokritou P. Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact. 2018;10:26–37.

    Article  PubMed  Google Scholar 

  35. Pyrgiotakis G, Luu W, Zhang Z, Vaze N, DeLoid G, Rubio L, et al. Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose. 2018;25:2303–19.

    Article  CAS  Google Scholar 

  36. Cohen JM, Beltran-Huarac J, Pyrgiotakis G, Demokritou P. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact. 2018;10:81–6.

    Article  PubMed  Google Scholar 

  37. Lee JY, Lim S, Park S, Moon MH. Characterization of oxidized phospholipids in oxidatively-modified low density lipoproteins by nanoflow liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2013;1288:54–62.

    Article  CAS  PubMed  Google Scholar 

  38. Folch J, Lees M, Solane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number U01ES027293, as well as by the Engineered Nanomaterials Resource and Coordination Core established at Harvard T. H. Chan School of Public Health (NIH grant # U24ES026946), both as parts of the Nanotechnology Health Implications Research Consortium. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwan Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Analytical Developments in Advancing Safety in Nanotechnology with guest editors Lisa Holland and Wenwan Zhong.

Electronic supplementary material

ESM 1

(PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Wang, H., Pyrgiotakis, G. et al. Analysis of lipid adsorption on nanoparticles by nanoflow liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 410, 6155–6164 (2018). https://doi.org/10.1007/s00216-018-1145-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1145-0

Keywords

Navigation