Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2–Au nanospheres

Abstract

We have devised a unique strategy for highly sensitive, selective, and colorimetric detection of mercury based on analyte-induced enhancement of the photocatalytic activity of TiO2–Au nanospheres (TiO2–Au NSs) toward degradation of methylene blue (MB). Through electrostatic interactions, Au nanoparticles are attached to poly-(sodium 4-styreneulfonate)/poly(diallyldimethylammonium chloride) modified TiO2 nanoparticles, which then form an Au shell on each TiO2 core through reduction of Au3+ with ascorbic acid. Notably, the deposition of Hg species (Hg2+/CH3Hg+) onto TiO2–Au NSs through strong Au–Hg aurophilic interactions speeds up catalytic degradation of MB. The first-order degradation rates of MB by TiO2–Au NSs and TiO2–Au–Hg NSs are 1.4 × 10−2 min−1 and 2.1 × 10−2 min−1, respectively. Using a commercial absorption spectrometer, the TiO2–Au NSs/MB approach provides linearity (R2 = 0.98) for Hg2+ over a concentration range of 10.0 to 100.0 nM, with a limit of detection (LOD) of 1.5 nM. On the other hand, using a low-cost smartphone app that records the color changes (ΔRGB) of MB solution based on the red–blue–green (RGB) component values, the TiO2–Au NSs/MB approach provides an LOD of 2.0 nM for Hg2+ and 5.0 nM for CH3Hg+, respectively. Furthermore, the smartphone app sensing system has been validated for the analyses of various samples, including tap water, lake water, soil, and Dorm II, showing its great potential for on-line analysis of environmental and biological samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Maxson PA. Global mercury production, use and trade. In: Pirrone N, Mahaffey KR, editors. Dynamics of mercury pollution on regional and global scales—atmospheric processes and human exposures around the world. New York: Springer; 2005. p. 25–50.

    Google Scholar 

  2. 2.

    Roy P, Lin Z-H, Liang C-T, Chang H-T. Iron telluride nanorods-based system for the detection of total mercury in blood. J Hazard Mater. 2012;243:286–91.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Liu C-W, Huang C-C, Chang H-T. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir. 2008;24(15):8346–50.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Park M, Seo S, Lee I-S, Jung J-H. Ultraefficient separation and sensing of mercury and methylmercury ions in drinking water by using aminonaphthalimide-functionalized Fe3O4@ SiO2 core/shell magnetic nanoparticles. Chem Commun. 2010;46(25):4478–80.

    Article  CAS  Google Scholar 

  5. 5.

    Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J. 2010;94(2):99–107.

    Article  CAS  Google Scholar 

  6. 6.

    Lewen N, Mathew S, Schenkenberger M, Raglione T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J Pharm Biomed Anal. 2004;35(4):739–52.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Palchetti I, Laschi S, Mascini M. Miniaturised stripping-based carbon modified sensor for in field analysis of heavy metals. Anal Chim Acta. 2005;530(1):61–7.

    Article  CAS  Google Scholar 

  8. 8.

    Placido T, Aragay G, Pons J, Comparelli R, Curri ML, Merkoçi A. Ion-directed assembly of gold nanorods: a strategy for mercury detection. ACS Appl. Mater Interfaces. 2013;5(3):1084–92.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Huang P-JJ, van Ballegooie C, Liu J. Hg2+ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA. Analyst. 2016;141:3788–93.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Chiang C-K, Huang C-C, Liu C-W, Chang H-T. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution. Anal Chem. 2008;80(10):3716–21.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, et al. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem. 2009;81(18):7660–6.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kim HJ, Park DS, Hyun MH, Shim YB. Determination of HgII ion with a 1, 11-bis (8-quinoyloxy)-3, 6, 9-trioxaundecane-modified glassy carbon electrode using spin-coating technique. Electroanalysis. 1998;10(5):303–6.

    Article  CAS  Google Scholar 

  13. 13.

    Childress ES, Roberts CA, Sherwood DY, LeGuyader CL, Harbron EJ. Ratiometric fluorescence detection of mercury ions in water by conjugated polymer nanoparticles. Anal Chem. 2012;84(3):1235–9.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    MacLean JL, Morishita K, Liu J. DNA stabilized silver nanoclusters for ratiometric and visual detection of Hg2+ and its immobilization in hydrogels. Biosens Bioelectron. 2013;48:82–6.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Wang C-W, Lin Z-H, Roy P, Chang H-T. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering. Front Chem. 2013;1:1–5.

    Google Scholar 

  16. 16.

    Huang C-C, Chang H-T. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution. Anal Chem. 2006;78(24):8332–8.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Deng L, Ouyang X, Jin J, Ma C, Jiang Y, Zheng J, et al. Exploiting the higher specificity of silver amalgamation: selective detection of mercury (II) by forming Ag/Hg amalgam. Anal Chem. 2013;85(18):8594–600.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Huang C-C, Yang Z, Lee K-H, Chang H-T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed Engl. 2007;46(36):6824–8.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Lin Y-W, Liu C-W, Chang H-T. DNA functionalized gold nanoparticles for bioanalysis. Anal Methods. 2009;1(1):14–24.

    Article  CAS  Google Scholar 

  20. 20.

    Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem. 2007;119(22):4171–4.

    Article  Google Scholar 

  21. 21.

    Liu D, Qu W, Chen W, Zhang W, Wang Z, Jiang X. Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem. 2010;82(23):9606–10.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Liu C-W, Hsieh Y-T, Huang C-C, Lin Z-H, Chang H-T. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun. 2008;19:2242–4.

    Article  CAS  Google Scholar 

  23. 23.

    Chen L-Y, Ou C-M, Chen W-Y, Huang C-C, Chang H-T. Synthesis of photoluminescent Au ND–PNIPAM hybrid microgel for the detection of Hg2+. ACS Appl Mater Interfaces. 2013;5(10):4383–8.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Salgueirino-Maceira V, Correa-Duarte MA, Farle M, López-Quintela A, Sieradzki K, Diaz R. Bifunctional gold-coated magnetic silica spheres. Chem Mater. 2006;18(11):2701–6.

    Article  CAS  Google Scholar 

  25. 25.

    Ravindranath R, Roy P, Periasamy AP, Chang H-T. Effects of deposited ions on the photocatalytic activity of TiO2–Au nanospheres. RSC Adv. 2014;4(100):57290–6.

    Article  CAS  Google Scholar 

  26. 26.

    Viscarra Rossel RA, Minasny B, Roudier P, McBratney AB. Colour space models for soil science. Geoderma. 2006;133(3–4):320–37.

    Article  CAS  Google Scholar 

  27. 27.

    Mahshid S, Askari M, Ghamsari MS. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol. 2007;189(1–3):296–300.

    Article  CAS  Google Scholar 

  28. 28.

    Chiang C-K, Chen W-T, Chang H-T. Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev. 2011;40(3):1269–81.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Mechiakh R, Sedrine NB, Chtourou R. Sol–gel synthesis, characterization and optical properties of mercury-doped TiO2 thin films deposited on ITO glass substrates. Appl Surf Sci. 2011;257(21):9103–9.

    Article  CAS  Google Scholar 

  30. 30.

    Aguado M, Cervera-March S, Giménez J. Continuous photocatalytic treatment of mercury (II) on titania powders. Kinetics and catalyst activity. Chem Eng Sci. 1995;50(10):1561–9.

    Article  CAS  Google Scholar 

  31. 31.

    Chang H, Su C, Lo C-H, Chen L-C, Tsung T-T, Jwo C-S. Photodecomposition and surface adsorption of methylene blue on TiO2 nanofluid prepared by ASNSS. Mater Trans. 2004;45(12):3334–7.

    Article  CAS  Google Scholar 

  32. 32.

    Xie J, Zheng Y, Ying JY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun. 2010;46(6):961–3.

    Article  CAS  Google Scholar 

  33. 33.

    Lee J-S, Mirkin CA. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem. 2008;80(17):6805–8.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc. 2008;130:3244–5.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines. Angew Chem. 2008;120(21):3991–5.

    Article  Google Scholar 

  36. 36.

    Huang C-C, Chang H-T. Parameters for selective colorimetric sensing of mercury (II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun. 2007;12:1215–7.

    Article  Google Scholar 

  37. 37.

    Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra RP. Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc. 2008;130(25):8038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lin C-Y, Yu C-J, Lin Y-H, Tseng W-L. Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem. 2010;82(16):6830–7.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Yoon S, Miller EW, He Q, Do PH, Chang CJ. A bright and specific fluorescent sensor for mercury in water, cells, and tissue. Angew Chem Int Ed. 2007;46(35):6658–61.

    Article  CAS  Google Scholar 

  40. 40.

    Lee D-N, Kim G-J, Kim H-J. A fluorescent coumarinylalkyne probe for the selective detection of mercury (II) ion in water. Tetrahedron Lett. 2009;50(33):4766–8.

    Article  CAS  Google Scholar 

  41. 41.

    Li M, Wang Q, Shi X, Hornak LA, Wu N. Detection of mercury (II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal Chem. 2011;83(18):7061–5.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Peng H-P, Hu Y, Liu P, Deng Y-N, Wang P, Chen W, et al. Label-free electrochemical DNA biosensor for rapid detection of multidrug resistance gene based on Au nanoparticles/toluidine blue–graphene oxide nanocomposites. Sens Actuator B Chem. 2015;207:269–76.

    Article  CAS  Google Scholar 

  43. 43.

    Li M, Zhou X, Ding W, Guo S, Wu N. Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II). Biosens Bioelectron. 2013;41:889–93.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Wu D, Zhang Q, Chu X, Wang H, Shen G, Yu R. Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosens Bioelectron. 2010;25(5):1025–31.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Allibone J, Fatemian E, Walker PJ. Determination of mercury in potable water by ICP-MS using gold as a stabilising agent. J Anal At Spectrom. 1999;14(2):235–9.

    Article  CAS  Google Scholar 

  46. 46.

    Harrington CF, Merson SA, D’Silva TM. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry. Anal Chim Acta. 2004;505(2):247–54.

    Article  CAS  Google Scholar 

  47. 47.

    Wang M, Feng W, Shi J, Zhang F, Wang B, Zhu M, et al. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta. 2007;71(5):2034–9.

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Wang Y, Yang F, Yang X. Colorimetric detection of mercury(II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl Mater Interfaces. 2010;2(2):339–42.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Zhou L, Lin Y, Huang Z, Ren J, Qu X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun. 2012;48(8):1147–9.

    Article  CAS  Google Scholar 

  50. 50.

    Li X, Liu L, Zhao J, Tan J. Optical properties of sodium chloride solution within the spectral range from 300 to 2500 nm at room temperature. Appl Spectrosc. 2015;69(5):635–40.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Muthukumaran S, Song L, Zhu B, Myat D, Chen J-Y, Gray S, et al. UV/TiO2 photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH. Water Sci Technol. 2014;70(3):437–43.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Yusa S-i, Fukuda K, Yamamoto T, Iwasaki Y, Watanabe A, Akiyoshi K, et al. Salt effect on the heat-induced association behavior of gold nanoparticles coated with poly (N-isopropylacrylamide) prepared via reversible addition-fragmentation chain transfer (RAFT) radical polymerization. Langmuir. 2007;23(26):12842–8.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Lévy R, Thanh NT, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc. 2004;126(32):10076–84.

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, et al. A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp. 2012;395:161–7.

    Article  CAS  Google Scholar 

  55. 55.

    Nakayama S, Kelsey I, Wang J, Sintim HO. C-di-GMP can form remarkably stable G-quadruplexes at physiological conditions in the presence of some planar intercalators. Chem Commun. 2011;16:4766–8.

    Article  CAS  Google Scholar 

  56. 56.

    Khataee A, Kasiri MB. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A Chem. 2010;328(1):8–26.

    Article  CAS  Google Scholar 

  57. 57.

    Kumar A, Mathur N. Photocatalytic oxidation of aniline using Ag+-loaded TiO2 suspensions. Appl Catal A. 2004;275(1):189–97.

    Article  CAS  Google Scholar 

  58. 58.

    Szabó-Bárdos E, Czili H, Horváth A. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. J Photochem Photobiol A. 2003;154(2):195–201.

    Article  Google Scholar 

  59. 59.

    Pham T-D, Lee B-K. Feasibility of silver doped TiO2/glass fiber photocatalyst under visible irradiation as an indoor air germicide. Int J Environ Res Public Health. 2014;11:3271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Zhuang J, Fu L, Tang D, Xu M, Chen G, Yang H. Target-induced structure-switching DNA hairpins for sensitive electrochemical monitoring of mercury (II). Biosens Bioelectron. 2013;39(1):315–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Science and Technology (MOST), Taiwan (grant no. 103-2923-M-002-002-MY3). P.R. and A.P.P. are grateful to MOST for a postdoctoral fellowship under the contract number MOST 104-2811-M-002-154 and MOST 104-2811-M-002-153, respectively. We would also like to thank Ms. S.-J. Ji and Ms. C.-Y. Chien of Precious Instrument Center (National Taiwan University) for their assistance in SEM and EDX analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huan-Tsung Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1.32 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravindranath, R., Periasamy, A.P., Roy, P. et al. Smart app-based on-field colorimetric quantification of mercury via analyte-induced enhancement of the photocatalytic activity of TiO2–Au nanospheres. Anal Bioanal Chem 410, 4555–4564 (2018). https://doi.org/10.1007/s00216-018-1114-7

Download citation

Keywords

  • Methylene blue
  • Mercury
  • Photocatalyst
  • Photo-degradation
  • Smartphone app
  • TiO2–Au nanospheres