Analytical and Bioanalytical Chemistry

, Volume 410, Issue 17, pp 4153–4163 | Cite as

Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry

  • Abneesh SrivastavaEmail author
  • R. Michael Verkouteren
Research Paper


Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO2 scale was realized using the pure CO2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13C/12C and 18O/16O isotope ratios are expressed relative to VPDB-CO2 using the \( {\delta}^{13}{C}_{VPDB-{CO}_2} \) and \( {\delta}^{18}{O}_{VPDB-{CO}_2} \) notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (−25 to +2) ‰ and (−33 to −1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for \( {\delta}^{13}{C}_{VPDB-{CO}_2} \) and \( {\delta}^{18}{O}_{VPDB-{CO}_2} \), respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO2 in CO2-free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values.

Graphical abstract

CO2 gas isotope ratio metrology


Isotope metrology Isotope reference material SI traceability VPDB-CO2 traceability δ13DI-IRMS 



The authors would like to thank Drs. R. Vocke and W. Tew for carefully reviewing the manuscript. Abneesh Srivastava thanks Dr. Joseph T. Hodges for discussions on absolute isotope ratio metrology.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

216_2018_1064_MOESM1_ESM.pdf (246 kb)
ESM 1 (PDF 246 kb)


  1. 1.
    Brewer PJ, Brown RJC, Miller MN, Minarro MD, Murugan A, Milton MJT, et al. Preparation and validation of fully synthetic standard gas mixtures with atmospheric isotopic composition for global CO2 and CH4 monitoring. Anal Chem. 2014;86(3):1887–93.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee JY, Yoo HS, Marti K, Moon DM, Lee JB, Kim JS. Effect of carbon isotopic variations on measured CO2 abundances in reference gas mixtures. J Geophys Res-Atmos. 2006;111(D5):8.CrossRefGoogle Scholar
  3. 3.
    Rhoderick GC, Kitzis DR, Kelley ME, Miller WR, Hall BD, Dlugokencky EJ, et al. Development of a northern continental air standard reference material. Anal Chem. 2016;88(6):3376–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Tohjima Y, Katsumata K, Morino I, Mukai H, Machida T, Akama I, et al. Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO2 measurement. J Geophys Res-Atmos. 2009;114:12.CrossRefGoogle Scholar
  5. 5.
    Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem. 2014;86(3):425–67.CrossRefGoogle Scholar
  6. 6.
    Hut G. Consultants' Group meeting on stable isotope reference samples for geochemical and hydrological investigations. Vienna. Austria: IAEA. September, 1985;1985:16–8.Google Scholar
  7. 7.
    Verkouteren RM, Klinedinst DB. Value Assignment and Uncertainty Estimation of Selected Light Stable Isotope Reference Materials: RMs 8543-8545, RMs 8562-8564, and RM 8566. NIST Special Publication. 2004;2004 Edition:260–149.Google Scholar
  8. 8.
    Friedman I, O'Neil J. Compilation of stable isotope fractionation factors of geochemical interest. U. S. Geological Survey, Professional Paper. 1977:440–KK.Google Scholar
  9. 9.
    Hayes JM. Practice and principles of isotopic measurements in organic chemistry. In: Meinschein WG, editor. Organic Geochemistry of Contemporaneous and Ancient Sedimen: Society of Economic Paleotologists and Mineralogists Tulsa, Okla.; 1983. p. 5–1 to 5–31.Google Scholar
  10. 10.
    Craig H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta. 1957;12(1–2):133–49.CrossRefGoogle Scholar
  11. 11.
    Nier AO. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev. 1950;77(6):789–93.CrossRefGoogle Scholar
  12. 12.
    Verkouteren RM. Preparation, characterization, and value assignment of carbon dioxide isotopic reference materials: RMs 8562, 8563, and 8564. Anal Chem. 1999;71(20):4740–6.CrossRefGoogle Scholar
  13. 13.
    Wendeberg M, Richter JM, Rothe M, Brand WA. Jena reference air set (JRAS): a multi-point scale anchor for isotope measurements of CO2 in air. Atmos Meas Tech. 2013;6(3):817–22.CrossRefGoogle Scholar
  14. 14.
    Moossen H. JRAS-06: keeping up with changing internationaly-distributed stable isotopic reference materials. In: 19th WMO/IAEA meeting on carbon dioxide, other greenhouse gases, and related measurement techniques (GGMT-2017); 2017; Empa Dubendorf. Switzerland: WMO; 2016.Google Scholar
  15. 15.
    ISO 6142, Gas analysis — Preparation of calibration gas mixtures — Gravimetric method.Google Scholar
  16. 16.
    ISO 6145 (all parts), Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods.Google Scholar
  17. 17.
    ISO 6144: Gas analysis -- Preparation of calibration gas mixtures -- Static volumetric method.Google Scholar
  18. 18.
    Gameson L. Proposal for Isotopic Gravimetric Suite of 400 μmol/ mol Methane (and Carbon Dioxide) in Air Balance Gas Standards in the δ13C Range of +20‰ to -90‰. Netherlands: Gas Analysis 2017; Rotterdam; 2017.Google Scholar
  19. 19.
    Brewer P. Gaseous reference materials to underpin measurements of amount fraction and isotopic composition of greenhouse gases. In: 19th WMO/IAEA meeting on carbon dioxide, other greenhouse gases, and related measurement techniques (GGMT-2017); 2017; Empa Dubendorf. Switzerland: WMO; 2016.Google Scholar
  20. 20.
    Russe K, Valkiers S, Taylor PDP. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon. Int J Mass Spectrom. 2004;235(3):255–62.CrossRefGoogle Scholar
  21. 21.
    Valkiers S, Varlam M, Russe K, Berglund M, Taylor P, Wang J, et al. Preparation of synthetic isotope mixtures for the calibration of carbon and oxygen isotope ratio measurements (in carbon dioxide) to the SI. Int J Mass Spectrom. 2007;264(1):10–21.CrossRefGoogle Scholar
  22. 22.
    Dunn PJH, Malinovsky D, Goenaga-Infante H. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry. Anal Bioanal Chem. 2015;407(11):3169–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Brand WA, Assonov SS, Coplen TB. Correction for the O-17 interference in delta (C-13) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC technical report). Pure Appl Chem. 2010;82(8):1719–33.CrossRefGoogle Scholar
  24. 24.
    Reference Sheet: Certified reference material, IAEA-603 (calcite), stable isotope reference material for δ13C and δ18O. IAEA; 2016.Google Scholar
  25. 25.
    Chang TL, Li W. A calibrated measurement of the atomic-weight of carbon. Chin Sci Bull. 1990;35(4):290–6.Google Scholar
  26. 26.
    Kaiser J. Reformulated O-17 correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios. Geochim Cosmochim Acta. 2008;72(5):1312–34.CrossRefGoogle Scholar
  27. 27.
    Specific requirements for stable isotope calibration. 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), vol. 2015. La Jolla, CA, USA: WMO; 2016.Google Scholar
  28. 28.
    Brand WA, Rothe M, Sperlich P, Strube M, Wendeberg M. Automated simultaneous measurement of the delta C-13 and delta H-2 values of methane and the delta C-13 and delta O-18 values of carbon dioxide in flask air samples using a new multi cryo-trap/gas chromatography/isotope ratio mass spectrometry system. Rapid Commun Mass Spectrom. 2016;30(13):1523–39.CrossRefPubMedGoogle Scholar
  29. 29.
    Ferretti DF, Lowe DC, Martin RJ, Brailsford GW. A new gas chromatograph-isotope ratio mass spectrometry technique for high-precision, N2O-free analysis of delta C-13 and delta O-18 in atmospheric CO2 from small air samples. J Geophys Res-Atmos. 2000;105(D5):6709–18.CrossRefGoogle Scholar
  30. 30.
    Fisher R, Lowry D, Wilkin O, Sriskantharajah S, Nisbet EG. High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(2):200–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Matthews DE, Hayes JM. Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem. 1978;50(11):1465–73.CrossRefGoogle Scholar
  32. 32.
    Assonov S, Taylor P, Brenninkmeijer CAM. A system for high-quality CO2 isotope analyses of air samples collected by the CARIBIC Airbus A340-600. Rapid Commun Mass Spectrom. 2009;23(9):1347–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Werner RA, Rothe M, Brand WA. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta O-18 determination in CO2 gas. Rapid Commun Mass Spectrom. 2001;15(22):2152–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Leckrone KJ, Hayes JM. Water-induced errors in continuous-flow carbon isotope ratio mass spectrometry. Anal Chem. 1998;70(13):2737–44.CrossRefPubMedGoogle Scholar
  35. 35.
    Huntington KW, Eiler JM, Affek HP, Guo W, Bonifacie M, Yeung LY, et al. Methods and limitations of 'clumped' CO2 isotope (Delta(47)) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom. 2009;44(9):1318–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Ghosh P, Patecki M, Rothe M, Brand WA. Calcite-CO2 mixed intoCO(2)-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun Mass Spectrom. 2005;19(8):1097–119.CrossRefGoogle Scholar
  37. 37.
    Meijer HAJ, Neubert REM, Visser GH. Cross contamination in dual inlet isotope ratio mass spectrometers. Int J Mass Spectrom. 2000;198(1–2):45–61.CrossRefGoogle Scholar
  38. 38.
    Coplen TB, Brand WA, Gehre M, Groning M, Meijer HAJ, Toman B, et al. New guidelines for delta C-13 measurements. Anal Chem. 2006;78(7):2439–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Paul D, Skrzypek G, Forizs I. Normalization of measured stable isotopic compositions to isotope reference scales - a review. Rapid Commun Mass Spectrom. 2007;21(18):3006–14.CrossRefPubMedGoogle Scholar
  40. 40.
    Verkouteren RM, Lee JN. Web-based interactive data processing: application to stable isotope metrology. Fresenius Journal of Analytical Chemistry. 2001;370(7):803–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Report of Investigation. Reference materials 8562–8564. Gaithersburg, MD: National Institute of Standards and Technology; 2007.Google Scholar
  42. 42.
    Allison CE, Francey, R. J. and Meijer, H. A. J. Recommendations for the reporting of stable isotope measurements of carbon and oxygen in CO2 gas. 1995.Google Scholar
  43. 43.
    Guides to the expression of uncertainty in measurement (GUM series). 2008 [Available from:
  44. 44.
    Merritt DA, Hayes JM. Factors controlling precision and accuracy in isotope-ratio-monitoring mass-spectrometry. Anal Chem. 1994;66(14):2336–47.CrossRefPubMedGoogle Scholar
  45. 45.
    Trolier M, White JWC, Tans PP, Masarie KA, Gemery PA. Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA global air sampling network. J Geophys Res-Atmos. 1996;101(D20):25897–916.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Gas Sensing Metrology Group, Chemical Sciences DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Surface and Trace Chemical Analysis Group, Materials Measurement Science Division, Materials Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations