Analytical and Bioanalytical Chemistry

, Volume 410, Issue 16, pp 3835–3846 | Cite as

Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples

  • Ioana M. Abbas
  • Holger Hoffmann
  • María Montes-Bayón
  • Michael G. Weller
Research Paper

Abstract

Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the “sticky” character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing a LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend a LC-MS/MS-based quantification method with a dynamic range of 0.5–40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials.

Graphical abstract

Structure of hepcidin-25 (Protein Data Bank, PDB ID 2KEF).

Keywords

Hepcidin-25 Liquid chromatography Tandem mass spectrometry ID-LC-MS/MS Silanization Basic solvent Alkaline mobile phase Adsorption Peptide losses Recovery Validation 

Notes

Acknowledgments

The authors would like to thank Dr. Andreas Lehmann for instrumentation support in the LC-MS/MS analysis.

Compliance with ethical standards

The experiments with human serum were conducted with commercially available materials purchased from Dunn Labortechnik, Asbach, Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1056_MOESM1_ESM.pdf (454 kb)
ESM 1 (PDF 454 kb)

References

  1. 1.
    Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33.  https://doi.org/10.1182/blood-2011-01-258467.CrossRefGoogle Scholar
  2. 2.
    Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127(23):2809–13.  https://doi.org/10.1182/blood-2015-12639112. CrossRefGoogle Scholar
  3. 3.
    Hare DJ. Hepcidin: a real-time biomarker of iron need. Metallomics. 2017;9(6):606–18.  https://doi.org/10.1039/c7mt00047b. CrossRefGoogle Scholar
  4. 4.
    Ganz T. Cellular iron: ferroportin is the only way out. Cell Metab. 2005;1(3):155–7.  https://doi.org/10.1016/j.cmet.2005.02.005.CrossRefGoogle Scholar
  5. 5.
    Mariani R, Trombini P, Pozzi M, Piperno A. Iron metabolism in thalassemia and sickle cell disease. Mediterr J Hematol Infect Dis. 2009;1(1):e2009006.  https://doi.org/10.4084/MJHID.2009.006. Google Scholar
  6. 6.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.  https://doi.org/10.1126/science.1104742.CrossRefGoogle Scholar
  7. 7.
    Handley S, Couchman L, Sharp P, Macdougall I, Moniz C. Bioanalysis measurement of hepcidin isoforms in human serum by liquid chromatography with high resolution mass spectrometry. Bioanalysis. 2017;9(6):541–53.CrossRefGoogle Scholar
  8. 8.
    Clark RJ, Tan CC, Preza GC, Nemeth E, Ganz T, Craik DJ. Understanding the structure/activity relationships of the iron regulatory peptide hepcidin. Chem Biol. 2011;18(3):336–43.  https://doi.org/10.1016/j.chembiol.2010.12.009.CrossRefGoogle Scholar
  9. 9.
    Nemeth E, Preza GC, Jung CL, Kaplan J, Waring AJ, Ganz T. The N-terminus of hepcidin is essential for its interaction with ferroportin: structure-function study. Blood. 2006;107(1):328–33.  https://doi.org/10.1182/blood-2005-05-2049.CrossRefGoogle Scholar
  10. 10.
    Blanchette NL, Manz DH, Torti FM, Torti SV. Modulation of hepcidin to treat iron deregulation: potential clinical applications. Expert Rev Hematol. 2016;9(2):169–86.  https://doi.org/10.1586/17474086.2016.1124757.CrossRefGoogle Scholar
  11. 11.
    Means RT Jr. Hepcidin and iron regulation in health and disease. Am J Med Sci. 2013;345(1):57–60.  https://doi.org/10.1097/MAJ.0b013e318253caf1.CrossRefGoogle Scholar
  12. 12.
    Macdougall IC, Malyszko J, Hider RC, Bansal SS. Current status of the measurement of blood hepcidin levels in chronic kidney disease. Clin J Am Soc Nephrol. 2010;5(9):1681–9.  https://doi.org/10.2215/CJN.05990809. CrossRefGoogle Scholar
  13. 13.
    Konz T, Montes-Bayon M, Vaulont S. Hepcidin quantification: methods and utility in diagnosis. Metallomics. 2014;6(9):1583–90.  https://doi.org/10.1039/c4mt00063c. CrossRefGoogle Scholar
  14. 14.
    Kroot JJ, Kemna EH, Bansal SS, Busbridge M, Campostrini N, Girelli D, et al. Results of the first international round robin for the quantification of urinary and plasma hepcidin assays: need for standardization. Haematologica. 2009;94(12):1748–52.  https://doi.org/10.3324/haematol.2009.010322.CrossRefGoogle Scholar
  15. 15.
    Kroot JJ, van Herwaarden AE, Tjalsma H, Jansen RT, Hendriks JC, Swinkels DW. Second round robin for plasma hepcidin methods: first steps toward harmonization. Am J Hematol. 2012;87(10):977–83.  https://doi.org/10.1002/ajh.23289.CrossRefGoogle Scholar
  16. 16.
    Laarakkers CM, Wiegerinck ET, Klaver S, Kolodziejczyk M, Gille H, Hohlbaum AM, et al. Improved mass spectrometry assay for plasma hepcidin: detection and characterization of a novel hepcidin isoform. PLoS One. 2013;8(10):e75518.  https://doi.org/10.1371/journal.pone.0075518.CrossRefGoogle Scholar
  17. 17.
    Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008;112(10):4292–7.  https://doi.org/10.1182/blood-2008-02-139915.CrossRefGoogle Scholar
  18. 18.
    Koliaraki V, Marinou M, Vassilakopoulos TP, Vavourakis E, Tsochatzis E, Pangalis GA, et al. A novel immunological assay for hepcidin quantification in human serum. PLoS One. 2009;4(2):e4581.  https://doi.org/10.1371/journal.pone.0004581.CrossRefGoogle Scholar
  19. 19.
    Addo L, Ikuta K, Tanaka H, Toki Y, Hatayama M, Yamamoto M, et al. The three isoforms of hepcidin in human serum and their processing determined by liquid chromatography-tandem mass spectrometry (LC-tandem MS). Int J Hematol. 2016;103(1):34–43.  https://doi.org/10.1007/s12185-015-1885-y.CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Weller MG. Quality issues of research antibodies. Anal Chem Insights. 2016;11:21–7.  https://doi.org/10.4137/ACI.S31614.CrossRefGoogle Scholar
  22. 22.
    Butterfield AM, Luan P, Witcher DR, Manetta J, Murphy AT, Wroblewski VJ, et al. A dual-monoclonal sandwich ELISA specific for hepcidin-25. Clin Chem. 2010;56(11):1725–32.  https://doi.org/10.1373/clinchem.2010.151522.CrossRefGoogle Scholar
  23. 23.
    Grebenchtchikov N, Geurts-Moespot AJ, Trentmann S, Andersen N, Bel Aiba RS, Allersdorfer A, et al. Engineered human lipocalin as an antibody mimetic: application to analysis of the small peptide hormone hepcidin. Clin Chem. 2014;60(6):897–9.  https://doi.org/10.1373/clinchem.2014.221671.CrossRefGoogle Scholar
  24. 24.
    Bansal SS, Abbate V, Bomford A, Halket JM, Macdougall IC, Thein SL, et al. Quantitation of hepcidin in serum using ultra-high-pressure liquid chromatography and a linear ion trap mass spectrometer. Rapid Commun Mass Spectrom. 2010;24(9):1251–9.  https://doi.org/10.1002/rcm.4512.CrossRefGoogle Scholar
  25. 25.
    Delaby C, Vialaret J, Bros P, Gabelle A, Lefebvre T, Puy H, et al. Clinical measurement of Hepcidin-25 in human serum: is quantitative mass spectrometry up to the job? EuPA Open Proteom. 2014;3:60–7.  https://doi.org/10.1016/j.euprot.2014.02.004.CrossRefGoogle Scholar
  26. 26.
    Murphy AT, Witcher DR, Luan P, Wroblewski VJ. Quantitation of hepcidin from human and mouse serum using liquid chromatography tandem mass spectrometry. Blood. 2007;110(3):1048–54.  https://doi.org/10.1182/blood-2006-11-057471.CrossRefGoogle Scholar
  27. 27.
    Rochat B, Peduzzi D, McMullen J, Bromirski M, Waldvogel S. Validation of hepcidin quantification in plasma using LCHRMS and discovery of a new hepcidin isoform. Bioanalysis. 2013;5(20):2509–20.CrossRefGoogle Scholar
  28. 28.
    Konz T, Montes-Bayon M, Sanz-Medel A. Elemental labeling and isotope dilution analysis for the quantification of the peptide hepcidin-25 in serum samples by HPLC-ICP-MS. Anal Chem. 2012;84(19):8133–9.  https://doi.org/10.1021/ac300578n.CrossRefGoogle Scholar
  29. 29.
    www.hepcidinanalysis.com. Access. 2017;15:10.Google Scholar
  30. 30.
    de Leenheer A, Thienpont L. Applications of isotope dilution-mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrom Rev. 1992;11:249–307.  https://doi.org/10.1002/mas.1280110402.CrossRefGoogle Scholar
  31. 31.
    Shackleton C. Clinical steroid mass spectrometry: a 45-year history culminating in HPLC-MS/MS becoming an essential tool for patient diagnosis. J Steroid Biochem Mol Biol. 2010;121(3–5):481–90.  https://doi.org/10.1016/j.jsbmb.2010.02.017.CrossRefGoogle Scholar
  32. 32.
    Vogeser M, Seger C. Mass spectrometry methods in clinical diagnostics—state of the art and perspectives. TrAC Trends Anal Chem. 2016;84:1–4.  https://doi.org/10.1016/j.trac.2016.04.018.CrossRefGoogle Scholar
  33. 33.
    Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V, et al. Hepcidin revisited, disulfide connectivity, dynamics, and structure. J Biol Chem. 2009;284(36):24155–67.  https://doi.org/10.1074/jbc.M109.017764. CrossRefGoogle Scholar
  34. 34.
    Swinkels DW, Girelli D, Laarakkers C, Kroot J, Campostrini N, Kemna EH, et al. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PLoS One. 2008;3(7):e2706.  https://doi.org/10.1371/journal.pone.0002706.CrossRefGoogle Scholar
  35. 35.
    Hoofnagle AN, Whiteaker JR, Carr SA, Kuhn E, Liu T, Massoni SA, et al. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry-based assays. Clin Chem. 2016;62(1):48–69.  https://doi.org/10.1373/clinchem.2015.250563. Google Scholar
  36. 36.
    Zheng J, Mehl J, Zhu Y, Xin B, Olah T. Application and challenges in using LC-MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery. Bioanalysis. 2014;6(6):859–79.CrossRefGoogle Scholar
  37. 37.
    Goebel-Stengel M, Stengel A, Tache Y, Reeve JR Jr. The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem. 2011;414(1):38–46.  https://doi.org/10.1016/j.ab.2011.02.009.CrossRefGoogle Scholar
  38. 38.
    Kristensen K, Henriksen JR, Andresen TL. Adsorption of cationic peptides to solid surfaces of glass and plastic. PLoS One. 2015;10(5):e0122419.  https://doi.org/10.1371/journal.pone.0122419.CrossRefGoogle Scholar
  39. 39.
    Itkonen O, Parkkinen J, Stenman UH, Hamalainen E. Preanalytical factors and reference intervals for serum hepcidin LC-MS/MS method. Clin Chim Acta. 2012;413(7–8):696–701.  https://doi.org/10.1016/j.cca.2011.12.015.CrossRefGoogle Scholar
  40. 40.
    Clarke W, Molinaro RJ, Bachmann LM, Botelho JC, Cao Z, French SG et al. Liquid chromatography-mass spectrometry methods; approved guideline. C62-A. 2014;34(16).Google Scholar
  41. 41.
  42. 42.
    Furey A, Moriarty M, Bane V, Kinsella B, Lehane M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 2013;115:104–22.  https://doi.org/10.1016/j.talanta.2013.03.048.CrossRefGoogle Scholar
  43. 43.
    Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S. From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid. Sci Rep. 2016;6:25162.  https://doi.org/10.1038/srep25162.CrossRefGoogle Scholar
  44. 44.
    Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P, van Ede AE, et al. Immunochemical and mass-spectrometry-based serum hepcidin assays for iron metabolism disorders. Clin Chem. 2010;56(10):1570–9.  https://doi.org/10.1373/clinchem.2010.149187.CrossRefGoogle Scholar
  45. 45.
    Melino S, Garlando L, Patamia M, Paci M, Petruzzelli R. A metal-binding site is present in the structure of hepcidin. J Pept Res. 2005;66(Suppl. 1):65–71.Google Scholar
  46. 46.
    Tselepis C, Ford SJ, McKie AT, Vogel W, Zoller H, Simpson RJ, et al. Characterization of the transition-metal-binding properties of hepcidin. Biochem J. 2010;427(2):289–96.  https://doi.org/10.1042/BJ20091521. CrossRefGoogle Scholar
  47. 47.
    Maclean B, Tomazela DM, Abbatiello SE, Zhang S, Whiteaker JR, Paulovich AG, et al. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem. 2010;82(24):10116.  https://doi.org/10.1021/ac102179j.CrossRefGoogle Scholar
  48. 48.
    Lefebvre T, Dessendier N, Houamel D, Ialy-Radio N, Kannengiesser C, Manceau H, et al. LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: clinical and research implications in iron disorders. Clin Chem Lab Med. 2015;53(10):1557–67.  https://doi.org/10.1515/cclm-2014-1093. CrossRefGoogle Scholar
  49. 49.
    Zheng X, Chen X, Jian N, Chen J, Hu P, Jiang J. A rapid and sensitive LC–MS–MS method for determination of hepcidin-25 in human serum, and measurement of its diurnal rhythm for healthy subjects. Chromatographia. 2014;78(1–2):73–80.  https://doi.org/10.1007/s10337-014-2808-4.Google Scholar
  50. 50.
    Galesloot TE, Vermeulen SH, Geurts-Moespot AJ, Klaver SM, Kroot JJ, van Tienoven D, et al. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011;117(25):e218–25.  https://doi.org/10.1182/blood-2011-02-337907.CrossRefGoogle Scholar
  51. 51.
    Kobold U, Dülffer T, dangl M, Escherich A, Kubbies M, Röddiger R, et al. Quantification of hepcidin-25 in huma n serum by isotope dilution micro-HPLC–tandem mass spectrometry. Clin Chem. 2008;54(9):1584–6.  https://doi.org/10.1373/clinchem.2008.107029.CrossRefGoogle Scholar
  52. 52.
    van der Vorm LN, Hendriks JC, Laarakkers CM, Klaver S, Armitage AE, Bamberg A, et al. Toward worldwide hepcidin assay harmonization: identification of a commutable secondary reference material. Clin Chem. 2016;62(7):993–1001.  https://doi.org/10.1373/clinchem.2016.256768.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ioana M. Abbas
    • 1
    • 2
  • Holger Hoffmann
    • 3
    • 4
  • María Montes-Bayón
    • 5
  • Michael G. Weller
    • 1
  1. 1.Division 1.5 Protein AnalysisFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.School of Analytical Sciences AdlershofHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Division 1.8 Environmental AnalysisFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  4. 4.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Department of Physical and Analytical ChemistryUniversity of OviedoOviedoSpain

Personalised recommendations