Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 13, pp 3053–3058 | Cite as

Naked eye detection of infertility based on sperm protamine-induced aggregation of heparin gold nanoparticles

  • Raj Vidya
  • Alex Saji
Communication

Abstract

The development of an easy to use, one-pot, environmentally friendly, non-invasive and label-free colorimetric probe for the determination of semen protamines, the biochemical marker of male fertility, using heparin gold nanoparticles (HAuNPs) is presented. The affinity of HAuNPs for protamines was due to the electrostatic interactions between polycationic protamine and polyanionic heparin. The binding of HAuNPs to protamine was characterized by variation in the plasmon absorption spectra followed by a visibly observable colour change of the solution from red to blue. We observed a red shift in the plasmon peak and the method exhibited linearity in the range of 10–70 ng/mL with a detection limit of 5 ng/mL, which is much lower than that reported for colorimetric sensors of protamine. The colour change and the variation in the absorbance of HAuNPs were highly specific for protamines in the presence of different interfering compounds and the method was successfully applied for determining protamine in real samples of semen and serum. Rather than a quantitative estimation, it seems that the method provides a quick screening between a large array of positive and negative samples and, moreover, it maintains the privacy of the user. The method appears to be simple and would be very useful in third-world countries where high-tech diagnostic aids are inaccessible to the majority of the population.

Graphical Abstract

Heparin gold nanoparticles aided visual detection of infertility

Keywords

Heparin Gold nanoparticles Protamines Infertility Surface plasmon absorption Semen 

Notes

Acknowledgements

We are grateful to Dr. K. Retheesh (Department of Chemistry, Govt. College for Women) and Dr. K.T.V. Vijayan (Department of Industrial Microbiology, Govt. College for Women) for their help in obtaining TEM and blood samples.

Funding information

The authors thank the Kerala State Council for Science Technology and Environment for the “Back-to-Lab” Post Doctoral Fellowship (14-40/BLP/WSD/KSCSTE/2016-17).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human participants and/or animals

The research is conducted as per the ethical guidelines of Govt. Women’s College. This study was approved by the ethical committee of Govt. Women’s College. Prior consent of all individuals was obtained for studies involving human participants.

Supplementary material

216_2018_1026_MOESM1_ESM.pdf (358 kb)
ESM 1 (PDF 357 kb)

References

  1. 1.
    Iammarrone E, Balet R, Lower AM, Gillott C, Grudzinskas JG. Male infertility. Best Pract Res Clin Obstet Gynaecol. 2003;17(2):211–29.CrossRefGoogle Scholar
  2. 2.
    Gonzales GF, Villena A. True corrected seminal fructose level: a better marker of the function of seminal vesicles in infertile men. Int J Androl. 2001;24(5):255–60.CrossRefGoogle Scholar
  3. 3.
    Artifeksov SB. The biochemical characteristics of sperm in patients with varicocle. Urol Nefrol. 1991;5(5):50–5.Google Scholar
  4. 4.
    Aoki VW, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. Hum Reprod. 2005;20:1298–306.CrossRefGoogle Scholar
  5. 5.
    Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227–32.CrossRefGoogle Scholar
  6. 6.
    Oliva R, Dixon GH. Veterbrate protamine genes and the histones to protamine replacement reactions. Mol Biol. 1991;40:25–94.Google Scholar
  7. 7.
    Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol. 2009;590:377–402.CrossRefGoogle Scholar
  8. 8.
    Xiao KP, Kim BY, Bruening ML. Detection of protamine and heparin using electrode modified with poly(acrylic acid) and its amine derivative. Electroanal. 2001;13:1447–53.CrossRefGoogle Scholar
  9. 9.
    Zhao J, Yi Y, Mi N, Yin B, We M, Chen Q, et al. Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin. Talanta. 2013;116:951–7.CrossRefGoogle Scholar
  10. 10.
    Liu J, Xu M, Wang B, Zhou Z, Wang L. Fluorescence sensor for protamines based on competitive interaction of polyacrylic acid modified with sodium 4-amino-1- naphthalenesulfonate with protamines and aminated graphene oxide. RSC Adv. 2017;7:1432–40.CrossRefGoogle Scholar
  11. 11.
    Rao H, Ge H, Wang X, Zhang Z, Liu X, Yang Y, et al. Colorimetric and fluorimetric detection of protamine by using a dual mode probe consisting of carbon quantum dots and gold nanoparticles. Microchim Acta. 2017;184:3017–25.CrossRefGoogle Scholar
  12. 12.
    Hvass A, Skelbaek-Pedersen B. Determination of protamine peptides in insulin drug products using reverse phase high performance chromatography. J Pharm Biomed Anal. 2005;37:551–62.CrossRefGoogle Scholar
  13. 13.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum size related properties and application towards biology, catalysis and nanotechnology. Chem Rev. 2004;104:293–346.CrossRefGoogle Scholar
  14. 14.
    Fu X, Chen L, Li J, Lin M, You H, Wang W. Label free colorimetric sensor for ultrasensitive detection of heparin based on colour quenching of gold nanorods by graphene oxide. Biosens Bioelectron. 2012;34:227–31.CrossRefGoogle Scholar
  15. 15.
    Chen L, Fu X, Li J. Ultrasensitive surface enhanced Raman scattering detection of trypsin based on antiaggregation of 4-mercaptopyridine functionalized silver nanoparticles: an optical sensing platform towards proteases. Nanoscale. 2013;5:5905–11.CrossRefGoogle Scholar
  16. 16.
    Wang S, Chen Z, Choo J, Chen L. Naked-eye sensitive ELISA-like assay based on gold enhanced peroxidase-like immunogold activity. Anal Bioanal Chem. 2016;408:1015–22.CrossRefGoogle Scholar
  17. 17.
    Casu B. Structure and biological activity of heparin. Adv Carbohydr Chem Biochem. 1985;43:51–134.CrossRefGoogle Scholar
  18. 18.
    Guo Y, Yan H. Preparation and characterization of heparin stabilized gold nanoparticles. J Carbohydr Chem. 2008;27:309–19.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryGovernment College for WomenThiruvananthapuramIndia

Personalised recommendations