Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 16, pp 3629–3638 | Cite as

Sizing lipid droplets from adult and geriatric mouse liver tissue via nanoparticle tracking analysis

  • Katherine A. Muratore
  • Charles P. Najt
  • Nicholas M. Livezey
  • James Marti
  • Douglas G. Mashek
  • Edgar A. Arriaga
Paper in Forefront

Abstract

The significance of lipid droplets in lipid metabolism, cell signaling, and regulating longevity is increasingly recognized, yet the lipid droplet’s unique properties and architecture make it difficult to size and study using conventional methods. To begin to address this issue, we demonstrate the capabilities of nanoparticle tracking analysis (NTA) for sizing of lipid droplets. NTA was found to be adequate to assess lipid droplet stability over time, indicating that lipid droplet preparations are stable for up to 24 h. NTA had the ability to compare the size distributions of lipid droplets from adult and geriatric mouse liver tissue, suggesting an age-related decrease in lipid droplet size. This is the first report on the use of NTA to size intracellular organelles.

Graphical Abstract

Light scattering reveals the temporal positions of individual lipid droplets, which are recorded with a camera. The two-dimensional diffusion constant of each lipid droplet is extracted from the data set, which is then used to calculate a hydrodynamic radius using the Stokes-Einstein equation.

Keyword

Lipid droplets Nanoparticle tracking analysis Aging Liver Organelles 

Notes

Funding

This work was supported by NIH AG020866. KAM acknowledges support through a University of Minnesota Doctoral Dissertation Fellowship and National Institutes of Health (NIH) AG029796. CPN acknowledges support from NIH DK007203. NML acknowledges support from NIH GM008700. DGM acknowledges support from NIH DK114401 and NIH AG055452. A portion of this work was carried out in the Minnesota Nano Center, which receives partial support from the National Science Foundation (NSF) through the NNCI program. A portion of this work was carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

Compliance with Ethical Standards

All mice were housed in a designated clean facility and treated in accordance with protocols approved by the University of Minnesota Institutional Animal Care and Use Committee.

Conflict of Interest

The authors have no potential conflicts of interest to disclose.

Supplementary material

216_2018_1016_MOESM1_ESM.mov (33.7 mb)
ESM 1 (MOV 34477 kb)
216_2018_1016_MOESM2_ESM.pdf (426 kb)
ESM 2 (PDF 426 kb)

References

  1. 1.
    Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40:325–438.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldberg AA, Bourque SD, Kyryakov P, Boukh-Viner T, Gregg C, Beach A, et al. A novel function of lipid droplets in regulating longevity. Biochem Soc Trans. 2009;37:1050–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Mcintosh AL, Storey SM, Atshaves BP. Intracellular lipid droplets contain dynamic pools of sphingomyelin: ADRP binds phospholipids with high affinity. Lipids. 2010;45:465–77.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol. 1999;10:51–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Chanderbhan R, Noland BJ, Scallen TJ, Vahouny GV. Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnanolone synthesis. J Biol Chem. 1982;257:8928–34.PubMedGoogle Scholar
  6. 6.
    Krahmer N, Farese RV, Walther TC. Balancing the fat: lipid droplets and human disease. EMBO Mol Med. 2013;5:905–15.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol. 2013;10:330–44.CrossRefPubMedGoogle Scholar
  8. 8.
    Day CP, James OFW. Steatohepatitis: a tale of two “Hits”? Gastroenterology. 1998;114:842–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Ding Y, Zhang S, Yang L, Na H, Zhang P, Zhang H, et al. Isolating lipid droplets from multiple species. Nat Protoc. 2012;8:43–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Nishimoto Y, Nakajima S, Tateya S, Saito M, Ogawa W, Tamori Y. Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein 27β coordinately control lipid droplet size in brown adipocytes. J Biol Chem. 2017;292:10824–34.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shi X, Li J, Zou X, Greggain J, Rødkær SV, Færgeman NJ, et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase. J Lipid Res. 2013;54:2504–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Greenspan P, Mayer E, Fowler S. Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol. 1985;100:965–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Yang HJ, Hsu CL, Yang JY, Yang WY. Monodansylpentane as a blue-fluorescent lipid-droplet marker for multi-color live-cell imaging. PLoS One. 2012;7  https://doi.org/10.1371/journal.pone.0032693.
  14. 14.
    Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc. 2013;8:1149–55.CrossRefPubMedGoogle Scholar
  15. 15.
    Klapper M, Ehmke M, Palgunow D, Böhme M, Matthäus C, Bergner G, et al. Fluorescence-based fixative and vital staining of lipid droplets in Caenorhabditis elegans reveal fat stores using microscopy and flow cytometry approaches. J Lipid Res. 2011;52:1281–93.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Deutsch MJ, Schriever SC, Roscher AA, Ensenauer R. Digital image analysis approach for lipid droplet size quantitation of oil red O-stained cultured cells. Anal Biochem. 2014;445:87–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu A, Kolanowski JL, Boumelhem BB, Yang K, Lee R, Kaur A, et al. A carborane-containing fluorophore as a stain of cellular lipid droplets. Chem Asian J. 2017;12:1704–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Gao M, Su H, Li S, Lin Y, Ling X, Qin A, et al. An easily accessible aggregation-induced emission probe for lipid droplet-specific imaging and movement tracking. Chem Commun. 2017;53:921–4.CrossRefGoogle Scholar
  19. 19.
    Smus JP, Moura CC, McMorrow E, Tare RS, Oreffo ROC, Mahajan S. Tracking adipogenic differentiation of skeletal stem cells by label-free chemically selective imaging. Chem Sci. 2015;6:7089–96.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cao C, Zhou D, Chen T, Streets AM, Huang Y. Label-free digital quantification of lipid droplets in single cells by stimulated raman microscopy on a microfluidic platform. Anal Chem. 2016;88:4931–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim K, Lee S, Yoon J, Heo J, Choi C, Park Y. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci Rep. 2016;6:1–8.CrossRefGoogle Scholar
  22. 22.
    Daniele JR, Heydari K, Arriaga EA, Dillin A. Identification and characterization of mitochondrial subtypes in caenorhabditis elegans via analysis of individual mitochondria by flow cytometry. Anal Chem. 2016;88:6309–16.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Taylor TH, Frost NW, Bowser MT, Arriaga EA. Analysis of individual mitochondria via fluorescent immunolabeling with anti-TOM22 antibodies. Anal Bioanal Chem. 2014;406:1683–91.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Degtyarev M, Reichelt M, Lin K. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. PLoS One. 2014;9  https://doi.org/10.1371/journal.pone.0087707.
  25. 25.
    Malloy A, Carr B. Nanoparticle tracking analysis - the halo system. Part Syst Charact. 2006;23:197–204.CrossRefGoogle Scholar
  26. 26.
    Soo CY, Song Y, Zheng Y, Campbell EC, Riches AC, Gunn-Moore F, et al. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012;136:192–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oosthuyzen W, Sime NEL, Ivy JR, Turtle EJ, Street JM, Pound J, et al. Quantification of human urinary exosomes by nanoparticle tracking analysis. J Physiol. 2013;23:5833–42.CrossRefGoogle Scholar
  28. 28.
    Tatischeff I, Larquet E, Falcon-Perez JM, Turpin PY, Kruglik SG (2012) Fast characterization of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles 1: doi:  https://doi.org/10.3402/jev.v1i0.19179
  29. 29.
    Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2  https://doi.org/10.3402/jev.v2i0.19671.
  30. 30.
    Kramberger P, Ciringer M, Štrancar A, Peterka M. Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J. 2012;9:265.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    James AE, Driskell JD. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst. 2013;138:1212.CrossRefPubMedGoogle Scholar
  32. 32.
    Atshaves BP, Storey SM, McIntosh AL, Petrescu AD, Lyuksyutova OI, Greenberg AS, et al. Sterol carrier protein-2 expression modulates protein and lipid composition of lipid droplets. J Biol Chem. 2001;276:25324–35.CrossRefPubMedGoogle Scholar
  33. 33.
    Storey SM, AL MI, Senthivinayagam S, Moon KC, Atshaves BP. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. AJP Endocrinol Metab. 2011;301:E991–E1003.CrossRefGoogle Scholar
  34. 34.
    Chandrasekhar S. Brownian motion, dynamical friction, and stellar dynamics. Rev Mod Phys. 1949;21:383–8.CrossRefGoogle Scholar
  35. 35.
    Einstein A. On the motion of small particles suspended in a stationary liquid, as required by the molecular kinetic theory of heat. Ann Phys. 1905;322:549–60.CrossRefGoogle Scholar
  36. 36.
    Marx E, Mulholland GW. Size and refractive index determination of single polystyrene spheres. J Res Natl Bur Stand. 1983;88(5):321.CrossRefGoogle Scholar
  37. 37.
    Haseda K, Kanematsu K, Noguchi K, Saito H, Umeda N, Ohta Y. Significant correlation between refractive index and activity of mitochondria: single mitochondrion study. Biomed Opt Express. 2015;6:859.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gouw TH, Vlugter JC. Physical properties of triglycerides. !. Density and refractive index. Eur J Lipid Sci Technol. 1966;68:544–69.Google Scholar
  39. 39.
    Suzuki M, Shinohara Y, Ohsaki Y, Fujimoto T (2011) Lipid droplets: Size matters. J Electron Microsc 60:  https://doi.org/10.1093/jmicro/dfr016
  40. 40.
    Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, et al. Liver-specific loss of perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol. 2016;310:G726–38.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    McManaman JL, Bales ES, Orlicky DJ, Jackman M, MacLean PS, Cain S, et al. Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res. 2013;54:1346–59.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhang S, Wang Y, Cui L, Deng Y, Xu S, Yu J, et al. Morphologically and functionally distinct lipid droplet subpopulations. Sci Rep. 2016;6:29539.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cohen B-C, Shamay A, Argov-Argaman N. Regulation of lipid droplet size in mammary epithelial cells by remodeling of membrane lipid composition-a potential mechanism. PLoS One. 2015;10:e0121645.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bonda-Ostaszewska E, Włostowski T, Krasowska A, Kozłowski P. Seasonal and photoperiodic effects on lipid droplet size and lipid peroxidation in the brown adipose tissue of bank voles (Myodes glareolus). Acta Theriol (Warsz). 2012;57:289–94.CrossRefGoogle Scholar
  45. 45.
    Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition, and energy metabolism in aging. Aging Res Rev. 2006;5:144–64.CrossRefGoogle Scholar
  46. 46.
    Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science. 2003;300(80):1140–2.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Daniele JR, Esping DJ, Garcia G, Parsons LS, Arriaga EA, Dillin A. High-throughput characterization of region-specific mitochondrial function and morphology. Sci Rep. 2017;7:6749.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Katherine A. Muratore
    • 1
  • Charles P. Najt
    • 1
  • Nicholas M. Livezey
    • 2
  • James Marti
    • 3
  • Douglas G. Mashek
    • 1
  • Edgar A. Arriaga
    • 1
    • 2
  1. 1.Department of Biochemistry, Molecular Biology, and BiophysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  3. 3.Minnesota Nano CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations