Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 16, pp 3683–3691 | Cite as

Fabrication of an immunosensor for early and ultrasensitive determination of human tissue plasminogen activator (tPA) in myocardial infraction and breast cancer patients

  • Haidar Saify Nabiabad
  • Khosro Piri
  • Fatemeh Kafrashi
  • Abbas Afkhami
  • Tayyebeh Madrakian
Research Paper

Abstract

Sensitive detection of biomarkers will mean accurate and early diagnosis of diseases. A tissue plasminogen activator (tPA) has a crucial role in many cardiovascular diseases and it is related to many processes such as angiogenesis in cancer cells. Therefore, sensitive determination of tPA is important in diagnosis and clinical research. tPA monoclonal antibody was covalently attached onto single-wall carbon nanotubes (SWCNTs) using diimide-activated imidation coupling. Functionalized SWCNTs were immobilized onto a glassy carbon electrode and the modification process was investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), SEM, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Cyclic voltammograms (CVs) in a scan rate of 100 mVs−1 was studied and comparisons were made between the modified glassy carbon electrodes (immobilized with antibodies) as a working electrode before and after the formation of tPA-antibody complex. Results of the SDS-PAGE demonstrated that the antibody was covalently and site directly attached to the SWCNTs. The fabricated biosensor provided a good linear response range from 0.1 to 1.0 ng mL−1 with a low detection limit of 0.026 ng mL−1. The immunosensor showed selectivity, reproducibility, good sensitivity, and acceptable stability. Satisfactory results were observed for early and sensitive determination of tPA in human serum samples. For the first time, such specific biosensor is currently being fabricated for tPA in our laboratories and successfully could determine tPA in myocardial infraction and breast cancer patients.

Graphical abstract

Fabricated biosensor for determination of tPA

Keywords

Antibody functionalized SWCNTs Biosensor Cyclic voltammetry Tissue plasminogen activator (tPA) 

Abbreviations

CV

Cyclic voltammetry

Da

Dalton

EDC

1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide

DDW

Double-distilled water

GCE

Glassy carbon electrode

NHS

N-Hydroxy succinimide

EIS

Impedance spectroscopy

Ab

Monoclonal antibody

PBS

Phosphate buffer solution

MWCO

Por molecular weight cutoff

SEM

Scanning electron microscope

SWCNTs

Single-wall carbon nanotubes

SDS-PAGE

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

tPA

Tissue plasminogen activator

Notes

Funding information

The authors received financial support from the University of Bu-Ali Sina (grant no. 18.04.1394).

Compliance with ethical standards

Ethical approval for the study was granted by the Research Ethical Committee of the Bu-Ali Sina University (ethical code: IR.BASU.BIO.1392.26), and all patients gave written, informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Saify NH, Yaghoobi MM, Jalali JM, Hosseinkhani S. Expression analysis and purification of human recombinant tissue type plasminogen activator (rt-PA) from transgenic tobacco plants. Prep Biochem Biotechnol. 2011;41(2):175–86.CrossRefGoogle Scholar
  3. 3.
    Teesalu T, Kulla A, Asser T, Koskiniemi M, Vaheri A. Tissue plasminogen activator as a key effector in neurobiology and neuropathology. Biochem Soc Trans. 2002;30(2):183–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Bansi DM, Saurabh K, Chandra MP. Nanomaterials based biosensors for cancer biomarker detection. J Phys Conf Ser. 2016;704:012011.CrossRefGoogle Scholar
  5. 5.
    González M, Jacinto G, José AA, Luis M, González F. Genomics and proteomics approaches for biomarker discovery in sporadic colorectal cancer with metastasis. Cancer Genomics Proteomics. 2013;10:19–26.Google Scholar
  6. 6.
    Guest PC, Gottschalk M, Bahn S. Proteomics: improving biomarker translation to modern medicine? NPJ Genom Med. 2013;5:17.CrossRefGoogle Scholar
  7. 7.
    Yamamoto K, Shi G, Zhou TS, Xu F, Xu JM, Kato T, et al. Study of carbon nanotubes–HRP modified electrode and its application for novel on-line biosensors. Analyst. 2003;128:249–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.CrossRefPubMedGoogle Scholar
  9. 9.
    Hawkridge AM, Muddiman DC. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Ann Rev Anal Chem. 2009;2:265–77.CrossRefGoogle Scholar
  10. 10.
    Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sardesai NP, Barron JC, Rusling JF. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal Chem. 2011;83(17):6698–703.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bagheri F, Piri K, Mohsenifar A, Ghaderi S. FRET-based nanobiosensor for detection of scopolamine in hairy root extraction of Atropa belladonna. Talanta. 2017;164:593–600.CrossRefPubMedGoogle Scholar
  13. 13.
    Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical biosensors for cancer biomarkers detection: recent advances and challenges. Electroanalysis. 2016;28:1–19.CrossRefGoogle Scholar
  14. 14.
    Chengwei W, Candace KC. Carbon nanotube-based electrodes for detection of low-ppb level hexavalent chromium using amperometry. ECS J Solid State Sci Technol. 2016;5(8):3026–31.CrossRefGoogle Scholar
  15. 15.
    Jacobs CB, Peairs MJ, Venton BJ. Carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta. 2010;662:105–27.CrossRefPubMedGoogle Scholar
  16. 16.
    Byoung CK, Inseon L, Seok-Joon K, Youngho W, Ki YK, Chulmin J, et al. Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Sci Rep. 2017;7:40202.  https://doi.org/10.1038/srep40202OCUS.CrossRefGoogle Scholar
  17. 17.
    Mendoza E, Orozco J, Enez-Jorquera C, Guerrero G, Calle A, Lechuga LM, et al. Scalable fabrication of immunosensors based on carbon nanotube polymer composites. Nanotechnology. 2008;19(7):075102. (6pp)CrossRefPubMedGoogle Scholar
  18. 18.
    Li M, Xiyan L, Xiulan ZF, Xiao W, Yan L. Metallic catalysts for structure-controlled growth of single-walled carbon nanotubes. Top Curr Chem (Z). 2017;375:29.CrossRefGoogle Scholar
  19. 19.
    Shim M, Wong Shi KN, Chen RJ, Li Y, Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002;2(4):285–8.CrossRefGoogle Scholar
  20. 20.
    Tavakkoli M, Nico H, Rasmus K, Hua J, Jani S, Esko I, et al. Electrochemical activation of single-walled carbon nanotubes with pseudo atomic-scale platinum for hydrogen evolution reaction. ACS Catal. 2017; Just Accepted Manuscript • Publication Date (Web): 17 Mar;  https://doi.org/10.1021/acscatal.7b00199.
  21. 21.
    Yang HC, Yuan R, Chai YQ, Su HL, Zhuo Y, Jiang W, et al. Electrochim Acta. 2011;56:1973–80.CrossRefGoogle Scholar
  22. 22.
    Zhao J, Zhang Y, Li H, Wen Y, Fan X, Lin F, et al. Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens Bioelectron. 2011;26:2297–303.CrossRefPubMedGoogle Scholar
  23. 23.
    Li H, Wei Q, He J, Li T, Zhao Y, Cai Y, et al. Electrochemical immunosensors for cancer biomarker with signal amplification based on ferrocene functionalized iron oxide nanoparticles. Biosens Bioelectron. 2011;26(8):3590–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Blondeau P, Rius-Ruiz F, Düzgün A, Riu J, Rius FX. Covalent functionalization of single-walled carbon nanotubes with adenosine monophosphate: towards the synthesis of SWCNT–aptamer hybrids. Mater Sci Eng C. 2011;31:1363–8.CrossRefGoogle Scholar
  25. 25.
    Guo C, Venturelli E, Bianco A, Kostarelos K. Cellular internalisation of humanized IgG antibody changes by functionalization onto multi-walled carbon nanotubes. Drug Discov Today. 2010;15:1100–1.Google Scholar
  26. 26.
    Liu S, Shen Q, Cao Y, Gan L, Wang Z, et al. Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coord Chem Rev. 2010;254:1101–16.CrossRefGoogle Scholar
  27. 27.
    Stobiecka M, Chalupa A, Dworakowska B. Piezometric biosensors for anti-apoptotic protein survivin based on buried positive-potential barrier and immobilized monoclonal antibodies. Biosens Bioelectron. 2016;84:37–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Asava E, Sezgintürk MK. A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker. Int J Biol Macromol. 2014;66:273–80.CrossRefGoogle Scholar
  29. 29.
    Saify Nabiabad H, Piri K, Amini M. Expression of active chimeric-tissue plasminogen activator in tobacco hairy roots, identification of a DNA aptamer and purification by aptamer functionalized-MWCNTs chromatography. Protein Expr Purif. 2016;  https://doi.org/10.1016/j.pep.2016.02.004.
  30. 30.
    Hamidi M, Zarei N, Shahbazi MA. A simple and sensitive HPLC-UV method for quantitation of lovastatin in human plasma: application to a bioequivalence study. Biol Pharm Bull. 2009;32(9):1600–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Madrakian T, Haghshenas E, Afkhami A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differe. Sensors Actuators B Chem. 2014;193:451–60.CrossRefGoogle Scholar
  32. 32.
    Kafrashi F, Afkhami A, Saify Nabiabad H, Madrakian T, Piri K. Designing of a new label-free electrochemical impedimetric nanosensor based on selective interaction sequence of L-lysine with activase kringle domains for sensitive detection of activase protein. J Mol Liq. 2017;248:60–5.CrossRefGoogle Scholar
  33. 33.
    Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen X. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano. 2012;6(8):6546–61.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haidar Saify Nabiabad
    • 1
  • Khosro Piri
    • 2
  • Fatemeh Kafrashi
    • 3
  • Abbas Afkhami
    • 3
  • Tayyebeh Madrakian
    • 3
  1. 1.Department of Medicinal Plant ProductionNahavand UniversityNahavandIran
  2. 2.Department of Biotechnology, College of AgricultureBu-Ali Sina UniversityHamadanIran
  3. 3.Department of Analytical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamadanIran

Personalised recommendations