Skip to main content

Advertisement

Log in

Comparative characterization of rat hippocampal plasma membrane and mitochondrial membrane proteomes based on a sequential digestion-centered combinative strategy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Plasma membrane (PM) and mitochondrial membrane (MM) proteins of rat hippocampal neurons were identified and comparatively characterized on the basis of a sequential digestion-centered combinative strategy for sample treatment. A total of 478 membrane proteins were identified, of which 240 had PM localization, 170 had MM localization, and 33 had both of the two subcellular localizations. Compared with the PM proteome, the MM proteome not only was smaller, more basic, and more hydrophobic, but also had a narrower protein molecular mass distribution range and a higher proportion of transmembrane proteins. By functional enrichment analysis, 287 molecular function terms for the PM proteome and 173 for the MM proteome were obtained. The MM proteome had a lower percentage of binding function terms and a higher percentage of catalysis function terms than the PM proteome, suggesting that mitochondrial proteins were more inclined to affect the physiological and biochemical processes by binding various molecules and as enzymes. Biological process enrichment showed that the genes of the PM and MM proteomes were mapped to 1104 and 460 biological processes, respectively. The biological processes with the most mapped genes of the PM proteome included those involved in vesicle recycling, transmitter release, neuronal development, protein and ion transport, etc., whereas those involved in electron transport, ATP synthesis, mitochondrial transport, mitochondrial apoptosis, etc., were the most gene-mapped biological processes for the MM proteome. The present work has deepened our understanding of the structure and function of hippocampal neurons and provided reference methods for research in the related field.

Functional comparison of the plasma membrane and mitochondrial membrane proteomes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vanguilder HD, Freeman WM. The hippocampal neuroproteome with aging and cognitive decline: past progress and future directions. Front Aging Neurosci. 2011;3:8–20.

    Article  CAS  Google Scholar 

  2. Riegel M, Wierzba M, Grabowska A, Jednoróg K, Marchewka A. Effect of emotion on memory for words and their context. J Comp Neurol. 2016;524:1636–45.

    Article  Google Scholar 

  3. Liu X, Guo Z, Liu W, Sun W, Ma C. Differential proteome analysis of hippocampus and temporal cortex using label-free based 2D-LC-MS/MS. J Proteome. 2017;165:26–34.

    Article  CAS  Google Scholar 

  4. Edgar PF, Douglas JE, Knight C, Cooper GJ, Faull RL, Kydd R. Proteome map of the human hippocampus. Hippocampus. 1999;9:644–50.

    Article  CAS  Google Scholar 

  5. Yang JW, Czech T, Lubec G. Proteomic profiling of human hippocampus. Electrophoresis. 2004;25:1169–74.

    Article  CAS  Google Scholar 

  6. Marques-Carneiro JE, Persike DS, Litzahn JJ, Cassel JC, Nehlig A, MJDS F. Hippocampal proteome of rats subjected to the Li-pilocarpine epilepsy model and the effect of carisbamate treatment. Pharmaceuticals (Basel). 2017;10:67–85.

    Article  Google Scholar 

  7. Cui Y, Liu X, Li X, Yang H. In-depth proteomic analysis of the hippocampus in a rat model after cerebral ischaemic injury and repair by Danhong injection (DHI). Int J Mol Sci. 2017;18:1355–76.

    Article  Google Scholar 

  8. Fountoulakis M, Tsangaris GT, Maris A, Lubec G. The rat brain hippocampus proteome. J Chromatogr B. 2005;819:115–29.

    Article  CAS  Google Scholar 

  9. Föcking M, Opstelten R, Prickaerts J, Steinbusch HW, Dunn MJ, van den Hove DL, et al. Proteomic investigation of the hippocampus in prenatally stressed mice implicates changes in membrane trafficking, cytoskeletal, and metabolic function. Dev Neurosci. 2014;36:432–42.

    Article  Google Scholar 

  10. Schindler J, Lewandrowski U, Sickmann A, Friauf E, Nothwang HG. Proteomic analysis of brain plasma membranes isolated by affinity two-phase partitioning. Mol Cell Proteomics. 2006;5:390–400.

    Article  CAS  Google Scholar 

  11. Schindler J, Nothwang HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics. 2006;6:5409–17.

    Article  CAS  Google Scholar 

  12. Hopkins AL, Groom CR. The druggable genome. Nat Rev Drug Discov. 2002;1:727–30.

    Article  CAS  Google Scholar 

  13. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:1155–63.

    Article  CAS  Google Scholar 

  14. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  15. Zhou J, Zhou TY, Cao R, Liu Z, Shen JY, Chen P, et al. Evaluation of the application of sodium deoxycholate to proteomic analysis of rat hippocampal plasma membrane. J Proteome Res. 2006;5:2547–53.

    Article  CAS  Google Scholar 

  16. Lin Y, Zhou J, Bi D, Chen P, Wang XC, Liang SP. Sodium deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal Biochem. 2008;377:259–66.

    Article  CAS  Google Scholar 

  17. Lu X, Zhu H. Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics. 2005;4:1948–58.

    Article  CAS  Google Scholar 

  18. Leonard RT, Vanderwoude WJ. Isolation of plasma membranes from corn roots by sucrose density gradient centrifugation: an anomalous effect of ficoll. Plant Physiol. 1976;57:105–14.

    Article  CAS  Google Scholar 

  19. Larsson C, Widell S, Kjellbom P. Preparation of high-purity of plasma membranes. Methods Enzymol. 1987;148:558–68.

    Article  CAS  Google Scholar 

  20. Lin Y, Liu Y, Li JJ, Zhao Y, He QZ, Han WJ, et al. Evaluation and optimization of removal of an acid-insoluble surfactant for shotgun analysis of membrane proteome. Electrophoresis. 2010;31:2705–13.

    Article  CAS  Google Scholar 

  21. Zhou J, Lin Y, Deng XC, Shen JY, He QY, Chen P, et al. Development and application of a two-phase, on-membrane digestion method in the analysis of membrane proteome. J Proteome Res. 2008;7:1778–83.

    Article  CAS  Google Scholar 

  22. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157:105–32.

    Article  CAS  Google Scholar 

  23. Correani V, Di Francesco L, Mignogna G, Fabrizi C, Leone S, Giorgi A, et al. Plasma membrane protein profiling in beta-amyloid-treated microglia cell line. Proteomics. 2017;17(17-18):1600439.

    Article  Google Scholar 

  24. Witzel K, Matros A, Møller ALB, Ramireddy E, Finnie C, Peukert M, et al. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant Cell Environ. 2018; https://doi.org/10.1111/pce.13154.

  25. Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res. 2008;7:731–40.

    Article  CAS  Google Scholar 

  26. Wang X, Liang S. Sample preparation for the analysis of membrane proteomes by mass spectrometry. Protein Cell. 2012;3:661–8.

    Article  CAS  Google Scholar 

  27. Kar UK, Simonian M, Whitelegge JP. Integral membrane proteins: bottom-up, top-down and structural proteomics. Expert Rev Proteomics. 2017;14:715–23.

    Article  CAS  Google Scholar 

  28. Nielsen PA, Olsen JV, Podtelejnikov AV, Andersen JR, Mann M, Wisniewski JR. Proteomic mapping of brain plasma membrane proteins. Mol Cell Proteomics. 2005;4:402–8.

    Article  CAS  Google Scholar 

  29. Adam PJ, Boyd R, Tyson KL, Fletcher GC, Stamps A, Hudson L, et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem. 2003;278:6482–9.

    Article  CAS  Google Scholar 

  30. Lin Y, Liu H, Liu Z, Wang X, Liang S. Shotgun analysis of membrane proteomes using a novel combinative strategy of solution-based sample preparation coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2012;901:18–24.

    Article  CAS  Google Scholar 

  31. Wu CC, MJ MC, Howellm KE, Yates JR 3rd. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol. 2003;21:532–8.

    Article  CAS  Google Scholar 

  32. Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics. 2004;3:675–91.

    Article  CAS  Google Scholar 

  33. Bartee E, McCormack A, Früh K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators. PLoS Pathog. 2006;2:e107.

    Article  Google Scholar 

  34. Blonder J, Goshe MB, Moore RJ, Pasa-Tolic L, Masselon CD, Lipton MS, et al. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res. 2002;1:351–60.

    Article  CAS  Google Scholar 

  35. Fischer F, Wolters D, Rögner M, Poetsch A. Toward the complete membrane proteome: high coverage of integral membrane proteins through transmembrane peptide detection. Mol Cell Proteomics. 2006;5:444–53.

    Article  CAS  Google Scholar 

  36. Lin Y, Huo LJ, Liu ZH, Li JL, Liu Y, He QZ, et al. Sodium laurate, a novel protease- and mass spectrometry-compatible detergent for mass spectrometry-based membrane proteomics. PLoS One. 2013;8:e59779.

    Article  CAS  Google Scholar 

  37. Qiao R, Li S, Zhou M, Chen P, Liu Z, Tang M, et al. In-depth analysis of the synaptic plasma membrane proteome of small hippocampal slices using an integrated approach. Neuroscience. 2017;353:119–32.

    Article  CAS  Google Scholar 

  38. Keren K. Cell motility: the integrating role of the plasma membrane. Eur Biophys J. 2011;40(9):1013–27.

    Article  CAS  Google Scholar 

  39. Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994;1197:167–96.

    Article  CAS  Google Scholar 

  40. Mokranjac D, Neupert W. Protein import into the mitochondria. Biochem Soc Trans. 2005;33:1019–23.

    Article  CAS  Google Scholar 

  41. Sidhu VK, Huang BX, Desai A, Kevala K, Kim HY. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome. Neurobiol Aging. 2016;41:73–85.

    Article  CAS  Google Scholar 

  42. Ingram T, Chakrabarti L. Proteomic profiling of mitochondria: what does it tell us about the ageing brain? Aging (Albany NY). 2016;8(12):3161–79.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31271135, 81302886) and the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianchun Wang.

Ethics declarations

All the procedures involving use of rats in this study conformed to the guidelines of the National Institutes of Health Guide for the Care and Use of Laboratory Animals, and were approved by the Medical Ethics Committee of Hunan Normal University.

Conflict of interest

The authors declare that they have no competing interests. The funders of this study had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

Electronic supplementary material

ESM 1

(PDF 1069 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Zhou, J., Lin, Y. et al. Comparative characterization of rat hippocampal plasma membrane and mitochondrial membrane proteomes based on a sequential digestion-centered combinative strategy. Anal Bioanal Chem 410, 3119–3131 (2018). https://doi.org/10.1007/s00216-018-0995-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0995-9

Keywords

Navigation