Skip to main content
Log in

Simultaneous determination of organophosphorus pesticides and phthalates in baby food samples by ultrasound–vortex-assisted liquid–liquid microextraction and GC–IT/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Baby foods are either a soft, liquid paste or an easily chewed food since babies lack developed muscles and teeth to chew effectively. Babies typically move to consuming baby food once nursing or formula is not sufficient for the child’s appetite. Some commercial baby foods have been criticized for their contents. This article focuses on the simultaneous determination of organophosphorus pesticides and phthalates by means of a method based on ultrasound–vortex-assisted liquid–liquid microextraction coupled with gas chromatography–ion trap mass spectrometry (GC–IT/MS). The protocol developed allowed the determination of six phthalates [dimethyl phthalate, diethyl phthalate, dibutyl phthalate, isobutyl cyclohexyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate] and 19 organophosphorus pesticides. Freeze-dried product samples (0.1-0.2 g) were dissolved in 10 mL of warm distilled water along with 5 μL of an internal standard (anthracene at 10 mg mL-1 in acetone): the choice of extraction solvent was studied, with the most suitable being n-heptane, which is used for phthalate determination in similar matrices. The solution, held for 5 min in a vortex mixer and for 6 min in a 100-W ultrasonic bath to favor solvent dispersion and consequently analyte extraction, was centrifuged at 4000 rpm for 30 min. Then 1 μL was injected into the GC–IT/MS system (SE-54 capillary column; length 30 m, inner diameter 250 μm, film thickness 0.25 μm). All analytical parameters investigated are discussed in depth. The method was applied to real commercial freeze-dried samples: significant contaminant concentrations were not found.

Simultaneous and sensitive determination of organophosphorus pesticides and phthalates in baby foods by the ultrasound–vortex-assisted liquid–liquid microextraction ֪gas chromatography–ion trap mass spectrometry procedure. 1 methacrifos, 2 pirofos, 3 phorate, 4 seraphos, 5 diazinon, 6 etrimphos, 7 dichlofenthion, 8 chlorpyrifos-methyl, 9 pirimiphos-methyl, 10 malathion, 11 chlorpyrifos, 12 parathion-ethyl, 13 pirimiphos-ethyl, 14 bromophos, 15 chlorfenvinphos, 16 bromophos-ethyl, 17 stirophos, 18 diethion, 19 coumaphos, A dimethyl phthalate, B diethyl phthalate, C dibutyl phthalate, D butyl cyclohexyl phthalate, E benzyl butyl phthalate, F bis(2-ethylhexyl) phthalate, IS internal standard

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sealey LA, Hughes BW, Sriskanda AN, Guest JR, Gibson AD, Johnson-Williams L, et al. Environmental factors in the development of autism spectrum disorders. Environ Int. 2016;88:288–98.

    Article  CAS  PubMed  Google Scholar 

  2. Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int. 2015;76:78–97.

    Article  CAS  PubMed  Google Scholar 

  3. Yin MC, Su KH. Investigation on risk of phthalate ester in drinking water and marketed foods. J Food Drug Anal. 1996;4:313–6.

    CAS  Google Scholar 

  4. Balafas D, Shaw KJ, Whitfield FB. Phthalate and adipate esters in Australian packaging materials. Food Chem. 1999;65:279–87.

    Article  CAS  Google Scholar 

  5. Inoue K, Kawaguchi M, Okada F, Yoshimura Y, Nakazawa H. Column-switching high-performance liquid chromatography electrospray mass spectrometry coupled with on-line of extraction for the determination of mono- and di-(2-ethylhexyl) phthalate in blood samples. Anal Bioanal Chem. 2003;375:527–33.

    Article  CAS  PubMed  Google Scholar 

  6. Tienpont B, David F, Dewulf E, Sandra P. Pitfalls and solutions for the trace determination of phthalates in water samples. Chromatographia. 2005;61:365–70.

    Article  CAS  Google Scholar 

  7. European Chemicals Bureau. Risk assessment report for bis(2-ethylhexyl)phthalate, DEHP consolidated final report. February, 2004. Document no. R042_0402_env_hh_4-6.

  8. International Agency for Research on Cancer Some industrial chemicals. IARC monographs on the evaluation carcinogenic risks to humans, vol. 77. Lyon: International Agency for Research on Cancer; 2000. p. 41.

    Google Scholar 

  9. Russo MV, Avino P, Perugini L, Notardonato I. Extraction and GC-MS analysis of phthalate esters in food matrices: A review. RSC Adv. 2015;5:37023–43.

    Article  CAS  Google Scholar 

  10. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Environ Health. 2007;210:623–34.

    Article  CAS  PubMed  Google Scholar 

  11. Nakane F, Kunieda M, Shimizu S, Kobayashi Y, Akane H, Akie Y, et al. Twenty-six-week oral toxicity of diheptyl phthalate with special emphasis on its induction of liver proliferative lesions in male F344 rats. J Toxicol Sci. 2012;37:527–37.

    Article  CAS  PubMed  Google Scholar 

  12. Petersen JH, Jensen LK. Phthalates and food-contact materials: enforcing the 2008 European Union plastics legislation. Food Addit Contam Part A. 2010;27:1608–16.

    Article  CAS  Google Scholar 

  13. Codex Alimentarius Commission. Pesticide maximum residue limit legislation around the world. Wellington: Ministry for Primary Industries; 2015. Available from https://www.foodsafety.govt.nz/industry/sectors/plant-products/pesticide-mrl/worldwide.htm. Accessed October 2017.

  14. Fenske RA, Kedan G, Lu C, Fisker-Andersen JA, Curl CL. Assessment of organophosphorous pesticide exposures in the diets of preschool children in Washington State. J Expo Anal Environ Epidemiol. 2002;22:21–8.

    Article  Google Scholar 

  15. D’Souza PE. Concentrations of pesticide residues in baby foods: understanding a common pathway of exposure for infants. Master’s thesis, Emory University, 22 April 2011. Available from https://pid.emory.edu/ark:/25593/948f6. Accessed October 2017.

  16. Meeker JD. Exposure to environmental endocrine disruptors and child development. Arch Pediatr Adolesc Med. 2012;166:E1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Committee on Pesticides in the Diets of Infants and Children. Pesticides in the diets of infants and children. Washington: National Academy Press; 1993. Available from https://www.nap.edu/catalog/2126.html. Accessed October 2017.

  18. Liddle PA, de Smedt P. Use of the mass spectrometer as a specific detector in the analysis of alcoholic beverages by gas-liquid chromatography. Ann Nutr Alim. 1978;32:931–9.

    CAS  Google Scholar 

  19. Suzuki T, Ishikawa K, Sato N, Sakai K. Determination of chlorinated pesticide residues in foods. III. Simultaneous analysis of chlorinated pesticide and phthalate ester residues by using AgNO3-coated Florisil column chromatography for cleanup of various samples. J Assoc Off Anal Chem. 1979;62:689–94.

    CAS  PubMed  Google Scholar 

  20. Wilson NK, Chuang JC, Lyu C, Menton R, Morgan MK. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J Expo Anal Environ Epidemiol. 2003;13:187–202.

    Article  CAS  PubMed  Google Scholar 

  21. Di Bella G, Saitta M, La Pera L, Alfa M, Dugo G. Pesticide and plasticizer residues in bergamot essential oils from Calabria (Italy). Chemosphere. 2004;56:777–82.

    Article  CAS  PubMed  Google Scholar 

  22. Di Bella G, Serrao L, Salvo F, Lo Turco V, Croce M, Dugo G. Pesticide and plasticizer residues in biological citrus essential oils from 2003-2004. Flav Fragr J. 2006;21:497–501.

    Article  CAS  Google Scholar 

  23. Frankhauser-Noti A, Grob K. Injector-internal thermal desorption from edible oils performed by programmed temperature vaporizing (PTV) injection. J Sep Sci. 2006;29:2365–74.

    Article  CAS  Google Scholar 

  24. Lambropoulou DA, Konstantinou IK, Albanis TA. Recent developments in headspace microextraction techniques for the analysis of environmental contaminants in different matrices. J Chromatogr A. 2007;1152:70–96.

    Article  CAS  PubMed  Google Scholar 

  25. Ye X, Pierik FH, Angerer J, Meltzer HM, Jaddoe VW, Tiemeier H, et al. Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol A in pooled urine specimens from pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Int J Hyg Environ Health. 2009;212:481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fusari P, Rovellini P, Folegatti L, Baglio D, Cavalieri A. Oil and flour of Cannabis sativa L. multiscreening analysis of mycotoxins, phthalates, polycyclic aromatic hydrocarbons, metals and pesticide residues. Riv Sost Gras. 2013;90:9–19.

    CAS  Google Scholar 

  27. Shen L, Xia B, Dai X. Residues of persistent organic pollutants in frequently-consumed vegetables and assessment of human health risk based on consumption of vegetables in Huizhou, south China. Chemosphere. 2013;93:2254–63.

    Article  CAS  PubMed  Google Scholar 

  28. Sun J, Pana L, Zhana Y, Lu H, Li X, Zhu L. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China. Sci Total Environ. 2016;544:670–6.

    Article  CAS  PubMed  Google Scholar 

  29. Myridakis A, Chalkiadaki G, Fotou M, Kogevinas M, Chatzi L, Stephanou EG. Exposure of preschool-age Greek children (RHEA cohort) to bisphenol a, parabens, phthalates, and organophosphates. Environ Sci Technol. 2016;50:932–41.

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Pan L, Tsang DCW, Li Z, Zhu L, Li X. Phthalate esters and organochlorine pesticides in agricultural soils and vegetables from fast-growing regions: a case study from eastern China. Environ Sci Pollut Res. 2018;25:34–42. https://doi.org/10.1007/s11356-016-7725-7.

    Article  CAS  Google Scholar 

  31. Yadav S, Rai S, Srivastava AK, Panchal S, Patel DK, Sharma VP, et al. Determination of pesticide and phthalate residues in tea by QuEChERS method and their fate in processing. Environ Sci Pollut Res Int. 2017;24:3074–83.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson NK, Chuang JC, Lyu C. Levels of persistent organic pollutants in several child day care centers. J Expo Anal Environ Epidemiol. 2001;11:449–58.

    Article  CAS  PubMed  Google Scholar 

  33. Russo MV, Avino P, Cinelli G, Notardonato I. Sampling of organophosphorus pesticides at trace levels in the atmosphere using XAD-2 adsorbent and analysis by gas chromatography coupled with nitrogen-phosphorus and ion-trap mass spectrometry detectors. Anal Bioanal Chem. 2012;404:1517–27.

    Article  CAS  PubMed  Google Scholar 

  34. Cinelli G, Avino P, Notardonato I, Centola A, Russo MV. Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem. 2014;146:181–7.

    Article  CAS  PubMed  Google Scholar 

  35. Russo MV, Notardonato I, Avino P, Cinelli G. Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid-liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv. 2014;4:59655–63.

    Article  CAS  Google Scholar 

  36. Russo MV, Notardonato I, Avino P, Cinelli G. Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal Methods. 2014;6:7030–7.

    Article  CAS  Google Scholar 

  37. Knoll JE. Estimation of the limit of detection in chromatography. J Chromatogr Sci. 1985;23:422–5.

    Article  CAS  Google Scholar 

  38. Gelard RC, Mountford MK. Infant formulas: evidence of the absence of pesticide residues. Reg Toxicol Pharmacol. 1993;17:181–92.

    Article  Google Scholar 

  39. Russo MV, Campanella L, Avino P. Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography-negative chemical ionization mass spectrometry analysis. J Chromatogr B. 2002;780:431–41.

    Article  CAS  Google Scholar 

  40. Mezcua M, Repetti MR, Agüera A, Ferrer C, García-Reyes JF, Fernández-Alba AR. Determination of pesticides in milk-based infant formulas by pressurized liquid extraction followed by gas chromatography tandem mass spectrometry. Anal Bioanal Chem. 2007;389:1833–40.

    Article  CAS  PubMed  Google Scholar 

  41. Melgar MJ, Santaeufemia M, García MA. Organophosphorus pesticide residues in raw milk and infant formulas from Spanish northwest. J Environ Sci Health B. 2010;45:595–600.

    Article  CAS  PubMed  Google Scholar 

  42. Cinelli G, Avino P, Notardonato I, Centola A, Russo MV. Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid–liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography–ion trap mass spectrometry. Anal Chim Acta. 2013;769:72–8.

    Article  CAS  PubMed  Google Scholar 

  43. Cinelli G, Avino P, Notardonato I, Russo MV. Ultrasound-vortex-assisted dispersive liquid-liquid microextraction coupled with gas chromatography with a nitrogen-phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine. Anal Methods. 2014;6:782–90.

    Article  CAS  Google Scholar 

  44. Petrarca MH, Fernandes JO, Godoy HT, Cunha SC. Multiclass pesticide analysis in fruit-based baby food: a comparative study of sample preparation techniques previous to gas chromatography-mass spectrometry. Food Chem. 2016;212:528–36.

    Article  CAS  PubMed  Google Scholar 

  45. Russo MV, Avino P, Notardonato I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J Chromatogr A. 2016;1474:1–7.

    Article  CAS  PubMed  Google Scholar 

  46. Mirabelli MF, Wolf J-C, Zenobi R. Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry. Anal Bioanal Chem. 2016;408:3425–34.

    Article  CAS  PubMed  Google Scholar 

  47. Pérez-Ortega P, Lara-Ortega FJ, Gilbert-López B, Moreno-González D, García-Reyes JF, Molina-Díaz A. Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS). Food Anal Methods. 2017;10:1216–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Avino.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Euroanalysis XIX with guest editors Charlotta Turner and Jonas Bergquist.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notardonato, I., Salimei, E., Russo, M.V. et al. Simultaneous determination of organophosphorus pesticides and phthalates in baby food samples by ultrasound–vortex-assisted liquid–liquid microextraction and GC–IT/MS. Anal Bioanal Chem 410, 3285–3296 (2018). https://doi.org/10.1007/s00216-018-0986-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0986-x

Keywords

Navigation