Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 19, pp 4575–4586 | Cite as

Capacitive hysteresis at the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate–polycrystalline gold interface

  • Anthony J. Lucio
  • Scott K. ShawEmail author
Paper in Forefront
Part of the following topical collections:
  1. Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry

Abstract

We report potential-dependent capacitance curves over a 2-V potential range for the 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)-trifluorophosphate (Emim FAP)–polycrystalline gold interface, and examine the effect of potential scan direction on results. We find very small levels of capacitive hysteresis in the Emim FAP–polycrystalline Au electrochemical system, where capacitance curves show minor dependence on the potential scan direction employed. This is a considerably different response than that reported for the Emim FAP–Au(111) interface where significant hysteresis is observed based on the potential scan direction (Drüschler et al. in J Phys Chem C 115 (14):6802–6808, 2011). Hysteresis effects have previously been suggested to be a general feature of an ionic liquid (IL) at electrified interfaces due to slow interfacial processes and has been demonstrated for numerous electrochemical systems. We provide new evidence that the experimental procedure used to acquire capacitance data and data workup could also have implications on capacitance–potential relationships in ILs. This work serves to progress our understanding of the nature of capacitive hysteresis at the IL–electrode interface.

Graphical abstract

Subtle changes in experimental methods can lead to significantly different capacitance measurements in ionic liquids. Which is the best approach?

Keywords

Capacitance Electrochemical impedance spectroscopy Electrochemical double layer Hysteresis Ionic liquid 

Notes

Acknowledgements

A.J.L. gratefully acknowledges support from the University of Iowa, Department of Chemistry GAANN Fellowship. A.J.L. kindly thanks Dr. Tamás Pajkossy (Hungarian Academy of Sciences), Prof. Bernard Boukamp (University of Twente), Jens Wallauer (rhd Instruments), and Prof. Mark Orazem (University of Florida) for helpful discussions.

Funding information

This work was financially supported by the ACS-PRF and Iowa Energy Center under awards 55279-DNI5 and OG-15-002, respectively.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_962_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.04 mb)

References

  1. 1.
    MacFarlane DR, Forsyth M, Howlett PC, Kar M, Passerini S, Pringle JM, et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat Rev Mater. 2016;1:15005.  https://doi.org/10.1038/natrevmats.2015.5.CrossRefGoogle Scholar
  2. 2.
    MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, et al. Energy applications of ionic liquids. Energy Environ Sci. 2014;7(1):232–50.  https://doi.org/10.1039/C3EE42099J.CrossRefGoogle Scholar
  3. 3.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8(8):621–9.  https://doi.org/10.1038/nmat2448.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao S-F, Horne M, Bond AM, Zhang J. Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J Phys Chem C. 2016;120(42):23989–4001.  https://doi.org/10.1021/acs.jpcc.6b08182.CrossRefGoogle Scholar
  5. 5.
    Garcia Rey N, Dlott DD. Structural transition in an ionic liquid controls CO2 electrochemical reduction. J Phys Chem C. 2015;119(36):20892–9.  https://doi.org/10.1021/acs.jpcc.5b03397.CrossRefGoogle Scholar
  6. 6.
    Zhou F, Liu S, Yang B, Wang P, Alshammari AS, Deng Y. Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem Commun. 2014;46:103–6.  https://doi.org/10.1016/j.elecom.2014.06.023.CrossRefGoogle Scholar
  7. 7.
    Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI. Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Electrochem Soc. 2013;160(2):H138–41.  https://doi.org/10.1149/2.004303jes.CrossRefGoogle Scholar
  8. 8.
    Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: John Wiley & Sons, Inc.; 2001.Google Scholar
  9. 9.
    Ivanistsev V, Kirchner K, Kirchner T, Fedorov MV. Restructuring of the electrical double layer in ionic liquids upon charging. J Phys Condens Matter. 2015;27(10):102101/102101–5.  https://doi.org/10.1088/0953-8984/27/10/102101.CrossRefPubMedGoogle Scholar
  10. 10.
    Lauw Y, Horne MD, Rodopoulos T, Leermakers FAM. Room-temperature ionic liquids: excluded volume and ion polarizability effects in the electrical double-layer structure and capacitance. Phys Rev Lett. 2009;103(11):117801/117801–4.  https://doi.org/10.1103/PhysRevLett.103.117801.CrossRefPubMedGoogle Scholar
  11. 11.
    Oldham KB. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface. J Electroanal Chem. 2008;613(2):131–8.  https://doi.org/10.1016/j.jelechem.2007.10.017.CrossRefGoogle Scholar
  12. 12.
    Kornyshev AA. Double-layer in ionic liquids: paradigm change? J Phys Chem B. 2007;111(20):5545–57.  https://doi.org/10.1021/jp067857o.CrossRefPubMedGoogle Scholar
  13. 13.
    Voegeli W, Arakawa E, Matsushita T, Sakata O, Wakabayashi Y. Dynamical response of the electric double layer structure of the DEME-TFSI ionic liquid to potential changes observed by time-resolved X-ray reflectivity. Z Phys Chem (Muenchen, Ger). 2016;230(4):577–85.  https://doi.org/10.1515/zpch-2015-0669.CrossRefGoogle Scholar
  14. 14.
    Chu M, Miller M, Dutta P. Crowding and anomalous capacitance at an electrode-ionic liquid interface observed using operando X-ray scattering. ACS Cent Sci. 2016;2(3):175–80.  https://doi.org/10.1021/acscentsci.6b00014.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hayes R, Borisenko N, Tam MK, Howlett PC, Endres F, Atkin R. Double layer structure of ionic liquids at the Au(111) electrode interface: an atomic force microscopy investigation. J Phys Chem C. 2011;115(14):6855–63.  https://doi.org/10.1021/jp200544b.CrossRefGoogle Scholar
  16. 16.
    Islam MM, Alam MT, Ohsaka T. Electrical double-layer structure in ionic liquids: a corroboration of the theoretical model by experimental results. J Phys Chem C. 2008;112(42):16568–74.  https://doi.org/10.1021/jp8058849.CrossRefGoogle Scholar
  17. 17.
    Baldelli S. Surface structure at the ionic liquid-electrified metal Interface. Acc Chem Res. 2008;41(3):421–31.  https://doi.org/10.1021/ar700185h.CrossRefPubMedGoogle Scholar
  18. 18.
    Li H, Endres F, Atkin R. Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)-ionic liquid interface as a function of potential. Phys Chem Chem Phys. 2013;15(35):14624–33.  https://doi.org/10.1039/c3cp52421c.CrossRefPubMedGoogle Scholar
  19. 19.
    Endres F, Borisenko N, Zein El Abedin S, Hayes R, Atkin R. The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements. Faraday Discuss. 2012;154(Ionic Liquids):221–33.  https://doi.org/10.1039/C1FD00050K.CrossRefPubMedGoogle Scholar
  20. 20.
    Carstens T, Hayes R, El Abedin SZ, Corr B, Webber GB, Borisenko N, et al. In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(1 1 1). Electrochim Acta. 2012;82:48–59.  https://doi.org/10.1016/j.electacta.2012.01.111.CrossRefGoogle Scholar
  21. 21.
    Griffin LR, Browning KL, Clarke SM, Smith AM, Perkin S, Skoda MWA, et al. Direct measurements of ionic liquid layering at a single mica-liquid interface and in nano-films between two mica-liquid interfaces. Phys Chem Chem Phys. 2017;19(1):297–304.  https://doi.org/10.1039/C6CP05757H.CrossRefGoogle Scholar
  22. 22.
    Jiang J, Cao D, Jiang D-e WJ. Kinetic charging inversion in ionic liquid electric double layers. J Phys Chem Lett. 2014;5(13):2195–200.  https://doi.org/10.1021/jz5009533.CrossRefPubMedGoogle Scholar
  23. 23.
    Vatamanu J, Borodin O, Smith GD. Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. J Am Chem Soc. 2010;132(42):14825–33.  https://doi.org/10.1021/ja104273r.CrossRefPubMedGoogle Scholar
  24. 24.
    Amith WD, Hettige JJ, Castner EW, Margulis CJ. Structures of ionic liquids having both anionic and cationic octyl tails: lamellar vacuum interface vs. sponge-like bulk order. J Phys Chem Lett. 2016;7(19):3785–90.  https://doi.org/10.1021/acs.jpclett.6b01763.CrossRefPubMedGoogle Scholar
  25. 25.
    Baldelli S. Interfacial structure of room-temperature ionic liquids at the solid-liquid Interface as probed by sum frequency generation spectroscopy. J Phys Chem Lett. 2013;4(2):244–52.  https://doi.org/10.1021/jz301835j.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang N, Wang X-R, Yuan Y-X, Wang H-F, Xu M-M, Ren Z-G, et al. Probing double layer structure at Au/[BMIm]BF4 interface by molecular length-dependent SERS Stark effect. J Electroanal Chem. 2015;751:137–43.  https://doi.org/10.1016/j.jelechem.2015.05.041.CrossRefGoogle Scholar
  27. 27.
    Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115(13):6357–426.  https://doi.org/10.1021/cr500411q.CrossRefPubMedGoogle Scholar
  28. 28.
    Greaves TL, Drummond CJ. Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem Rev. 2015;115(20):11379–448.  https://doi.org/10.1021/acs.chemrev.5b00158.CrossRefPubMedGoogle Scholar
  29. 29.
    Fedorov MV, Kornyshev AA. Ionic liquids at electrified interfaces. Chem Rev. 2014;114(5):2978–3036.  https://doi.org/10.1021/cr400374x.CrossRefPubMedGoogle Scholar
  30. 30.
    Small LJ, Wheeler DR. Influence of analysis method on the experimentally observed capacitance at the gold-ionic liquid interface. J Electrochem Soc. 2014;161(4):H260–3.  https://doi.org/10.1149/2.094404jes.CrossRefGoogle Scholar
  31. 31.
    Roling B, Drueschler M, Huber B. Slow and fast capacitive process taking place at the ionic liquid/electrode interface. Faraday Discuss. 2012;154(Ionic Liquids):303–11.  https://doi.org/10.1039/C1FD00088H.CrossRefPubMedGoogle Scholar
  32. 32.
    Wallauer J, Drueschler M, Huber B, Roling B. The differential capacitance of ionic liquid | metal electrode interfaces—a critical comparison of experimental results with theoretical predictions. Z Naturforsch, B: J Chem Sci. 2013;68(10):1143–53.  https://doi.org/10.5560/znb.2013-3153.CrossRefGoogle Scholar
  33. 33.
    Atkin R, Borisenko N, Drüschler M, Endres F, Hayes R, Huber B, et al. Structure and dynamics of the interfacial layer between ionic liquids and electrode materials. J Mol Liq. 2014;192:44–54.  https://doi.org/10.1016/j.molliq.2013.08.006.CrossRefGoogle Scholar
  34. 34.
    Parr D, Chrestenson J, Malik K, Molter M, Zibart C, Egan B, et al. Structure and dynamics at ionic liquid/electrode interfaces. ECS Trans. 2015;66(30):35–42.CrossRefGoogle Scholar
  35. 35.
    Motobayashi K, Minami K, Nishi N, Sakka T, Osawa M. Hysteresis of potential-dependent changes in ion density and structure of an ionic liquid on a gold electrode: in situ observation by surface-enhanced infrared absorption spectroscopy. J Phys Chem Lett. 2013;4(18):3110–4.  https://doi.org/10.1021/jz401645c.CrossRefGoogle Scholar
  36. 36.
    Yasui Y, Kitazumi Y, Mizunuma H, Nishi N, Kakiuchi T. A comparison of the ultraslow relaxation processes at the ionic liquid|water interface for three hydrophobic ionic liquids. Electrochem Commun. 2010;12(11):1479–82.  https://doi.org/10.1016/j.elecom.2010.08.011.CrossRefGoogle Scholar
  37. 37.
    Uysal A, Zhou H, Feng G, Lee SS, Li S, Fenter P, et al. Structural origins of potential dependent hysteresis at the electrified graphene/ionic liquid Interface. J Phys Chem C. 2014;118(1):569–74.  https://doi.org/10.1021/jp4111025.CrossRefGoogle Scholar
  38. 38.
    Zhou W, Xu Y, Ouchi Y. Hysteresis effects in the in-situ SFG and differential capacitance measurements on metal electrode/ionic liquids interface. ECS Trans. 2012;50(11, Molten Salts and Ionic Liquids 18):339–48, 310 pp.  https://doi.org/10.1149/05011.0339ecst.CrossRefGoogle Scholar
  39. 39.
    Kolb DM, Schneider J. Surface reconstruction in electrochemistry: gold(100)-(5 x 20), gold(111)-(1 x 23) and gold(110)-(1 x 2). Electrochim Acta. 1986;31(8):929–36.  https://doi.org/10.1016/0013-4686(86)80005-6.CrossRefGoogle Scholar
  40. 40.
    Randin JP, Yeager E. Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes. J Electroanal Chem Interfacial Electrochem. 1975;58(2):313–22.  https://doi.org/10.1016/S0022-0728(75)80089-1.CrossRefGoogle Scholar
  41. 41.
    Alam MT, Masud J, Islam MM, Okajima T, Ohsaka T. Differential capacitance at Au(111) in 1-Alkyl-3-methylimidazolium tetrafluoroborate based room-temperature ionic liquids. J Phys Chem C. 2011;115(40):19797–804.  https://doi.org/10.1021/jp205800x.CrossRefGoogle Scholar
  42. 42.
    Gore TR, Bond T, Zhang W, Scott RWJ, Burgess IJ. Hysteresis in the measurement of double-layer capacitance at the gold-ionic liquid interface. Electrochem Commun. 2010;12(10):1340–3.  https://doi.org/10.1016/j.elecom.2010.07.015.CrossRefGoogle Scholar
  43. 43.
    Drueschler M, Huber B, Passerini S, Roling B. Hysteresis effects in the potential-dependent double layer capacitance of room temperature ionic liquids at a polycrystalline platinum interface. J Phys Chem C. 2010;114(8):3614–7.  https://doi.org/10.1021/jp911513k.CrossRefGoogle Scholar
  44. 44.
    Lockett V, Sedev R, Ralston J, Horne M, Rodopoulos T. Differential capacitance of the electrical double layer in imidazolium-based ionic liquids: influence of potential, cation size, and temperature. J Phys Chem C. 2008;112(19):7486–95.  https://doi.org/10.1021/jp7100732.CrossRefGoogle Scholar
  45. 45.
    Drüschler M, Huber B, Roling B. On capacitive processes at the interface between 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and au(111). J Phys Chem C. 2011;115(14):6802–8.  https://doi.org/10.1021/jp200395j.CrossRefGoogle Scholar
  46. 46.
    Malik MK, Chrestenson JR, Parr D, Gray D, Mitiku H, Kahila T, et al. Probing ionic liquid/electrode interfaces by hyperspectral imaging. ECS Trans. 2016;75(15):545–53.  https://doi.org/10.1149/07515.0545ecst.CrossRefGoogle Scholar
  47. 47.
    Nishi N, Hirano Y, Motokawa T, Kakiuchi T. Ultraslow relaxation of the structure at the ionic liquid|gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: asymmetry of the relaxation time to the potential-step direction. Phys Chem Chem Phys. 2013;15(28):11615–9.  https://doi.org/10.1039/c3cp51463c.CrossRefPubMedGoogle Scholar
  48. 48.
    Georgi N, Kornyshev AA, Fedorov MV. The anatomy of the double layer and capacitance in ionic liquids with anisotropic ions: electrostriction vs. lattice saturation. J Electroanal Chem. 2010;649(1–2):261–7.  https://doi.org/10.1016/j.jelechem.2010.07.004.CrossRefGoogle Scholar
  49. 49.
    Fedorov MV, Georgi N, Kornyshev AA. Double layer in ionic liquids: the nature of the camel shape of capacitance. Electrochem Commun. 2010;12(2):296–9.  https://doi.org/10.1016/j.elecom.2009.12.019.CrossRefGoogle Scholar
  50. 50.
    Su Y-Z, Fu Y-C, Yan J-W, Chen Z-B, Mao B-W. Double layer of au(100)/ionic liquid Interface and its stability in imidazolium-based ionic liquids. Angew Chem Int Ed. 2009;48(28):5148–51, S5148/5141-S5148/5147.  https://doi.org/10.1002/anie.200900300.CrossRefGoogle Scholar
  51. 51.
    Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J. Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys Chem Chem Phys. 2010;12(39):12499–512.  https://doi.org/10.1039/c0cp00170h.CrossRefPubMedGoogle Scholar
  52. 52.
    Cannes C, Cachet H, Debiemme-Chouvy C, Deslouis C, de Sanoit J, Le Naour C, et al. Double layer at [BuMeIm][Tf2N] ionic liquid-Pt or -C material interfaces. J Phys Chem C. 2013;117(44):22915–25.  https://doi.org/10.1021/jp407665q.CrossRefGoogle Scholar
  53. 53.
    Lucio AJ, Shaw SK, Zhang J, Bond AM. Large-amplitude Fourier-transformed AC Voltammetric study of the capacitive electrochemical behavior of the 1-butyl-3-methylimidazolium tetrafluoroborate-polycrystalline gold electrode interface. J Phys Chem C. 2017;121(22):12136–47.  https://doi.org/10.1021/acs.jpcc.7b00287.CrossRefGoogle Scholar
  54. 54.
    Islam MM, Alam MT, Okajima T, Ohsaka T. Electrical double layer structure in ionic liquids: an understanding of the unusual capacitance-potential curve at a nonmetallic electrode. J Phys Chem C. 2009;113(9):3386–9.  https://doi.org/10.1021/jp8114447.CrossRefGoogle Scholar
  55. 55.
    Alam MT, Islam MM, Okajima T, Ohsaka T. Capacitance measurements in a series of room-temperature ionic liquids at glassy carbon and gold electrode interfaces. J Phys Chem C. 2008;112(42):16600–8.  https://doi.org/10.1021/jp804620m.CrossRefGoogle Scholar
  56. 56.
    Alam MT, Islam MM, Okajima T, Ohsaka T. Measurements of differential capacitance in room temperature ionic liquid at mercury, glassy carbon and gold electrode interfaces. Electrochem Commun. 2007;9(9):2370–4.  https://doi.org/10.1016/j.elecom.2007.07.009.CrossRefGoogle Scholar
  57. 57.
    Gomes C, Costa R, Pereira CM, Silva AF. The electrical double layer at the ionic liquid/Au and Pt electrode interface. RSC Adv. 2014;4(55):28914–21.  https://doi.org/10.1039/C4RA03977G.CrossRefGoogle Scholar
  58. 58.
    Brug GJ, Van den Eeden ALG, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem. 1984;176(1–2):275–95.  https://doi.org/10.1016/S0022-0728(84)80324-1.CrossRefGoogle Scholar
  59. 59.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Constant-phase-element behavior caused by resistivity distributions in films. J Electrochem Soc. 2010;157(12):C458–63.  https://doi.org/10.1149/1.3499565.CrossRefGoogle Scholar
  60. 60.
    Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Constant-phase-element behavior caused by resistivity distributions in films. J Electrochem Soc. 2010;157(12):C452–7.  https://doi.org/10.1149/1.3499564.CrossRefGoogle Scholar
  61. 61.
    Borisenko N, Zein El Abedin S, Endres F. An in situ STM and DTS study of the extremely pure [EMIM]FAP/Au(111) Interface. ChemPhysChem. 2012;13(7):1736–42.  https://doi.org/10.1002/cphc.201100873.CrossRefPubMedGoogle Scholar
  62. 62.
    Gritzner G, Kuta J. Recommendations on reporting electrode potentials in nonaqueous solvents. Pure Appl Chem. 1982;54(8):1527–32.  https://doi.org/10.1351/pac198254081527.CrossRefGoogle Scholar
  63. 63.
    Weingarth D, Foelske-Schmitz A, Wokaun A, Koetz R. PTFE bound activated carbon as quasi-reference electrode for ionic liquids. Electrochem Commun. 2012;18:116–8.  https://doi.org/10.1016/j.elecom.2012.02.040.CrossRefGoogle Scholar
  64. 64.
    Torriero AAJ, Howlett PC. Ionic liquid effects on the redox potential of ferrocene. Electrochem Commun. 2012;16(1):84–7.  https://doi.org/10.1016/j.elecom.2011.12.006.CrossRefGoogle Scholar
  65. 65.
    Snook GA, Best AS, Pandolfo AG, Hollenkamp AF. Evaluation of a Ag|Ag+ reference electrode for use in room temperature ionic liquids. Electrochem Commun. 2006;8(9):1405–11.  https://doi.org/10.1016/j.elecom.2006.07.004.CrossRefGoogle Scholar
  66. 66.
    Gnahm M, Pajkossy T, Kolb DM. The interface between Au(1 1 1) and an ionic liquid. Electrochim Acta. 2010;55(21):6212–7.  https://doi.org/10.1016/j.electacta.2009.08.031.CrossRefGoogle Scholar
  67. 67.
    Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. The electrochemical society series. Hoboken: John Wiley & Sons, Inc.; 2017.CrossRefGoogle Scholar
  68. 68.
    Huang VM-W, Vivier V, Frateur I, Orazem ME, Tribollet B. The global and local impedance response of a blocking disk electrode with local constant-phase-element behavior. J Electrochem Soc. 2007;154(2):C89–98.  https://doi.org/10.1149/1.2398889.CrossRefGoogle Scholar
  69. 69.
    Seki S, Serizawa N, Hayamizu K, Tsuzuki S, Umebayashi Y, Takei K, et al. Physicochemical and electrochemical properties of 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-ethyl-3-methylimidazolium tetracyanoborate. J Electrochem Soc. 2012;159(7):A967–71.  https://doi.org/10.1149/2.032207jes.CrossRefGoogle Scholar
  70. 70.
    Jaensch T, Wallauer J, Roling B. Influence of electrode roughness on double layer formation in ionic liquids. J Phys Chem C. 2015;119(9):4620–6.  https://doi.org/10.1021/jp512617j.CrossRefGoogle Scholar
  71. 71.
    Silva F, Gomes C, Figueiredo M, Costa R, Martins A, Pereira CM. The electrical double layer at the [BMIM][PF6] ionic liquid/electrode interface—effect of temperature on the differential capacitance. J Electroanal Chem. 2008;622(2):153–60.  https://doi.org/10.1016/j.jelechem.2008.05.014.CrossRefGoogle Scholar
  72. 72.
    Balabajew M, Roling B. Minimizing artifacts in three-electrode double layer capacitance measurements caused by stray capacitances. Electrochim Acta. 2015;176:907–18.  https://doi.org/10.1016/j.electacta.2015.07.074.CrossRefGoogle Scholar
  73. 73.
    Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies. Curr Opin Electrochem. 2017;1(1):53–8.  https://doi.org/10.1016/j.coelec.2017.01.006.CrossRefGoogle Scholar
  74. 74.
    Mueller C, Vesztergom S, Pajkossy T, Jacob T. The interface between Au(1 0 0) and 1-butyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide. J Electroanal Chem. 2015;737:218–25.  https://doi.org/10.1016/j.jelechem.2014.06.010.CrossRefGoogle Scholar
  75. 75.
    Pajkossy T, Kolb DM. The interfacial capacitance of Au(100) in an ionic liquid, 1-butyl-3-methyl-imidazolium hexafluorophosphate. Electrochem Commun. 2011;13(3):284–6.  https://doi.org/10.1016/j.elecom.2011.01.004.CrossRefGoogle Scholar
  76. 76.
    Orazem ME, Frateur I, Tribollet B, Vivier V, Marcelin S, Pebere N, et al. Dielectric properties of materials showing constant-phase-element (CPE) impedance response. J Electrochem Soc. 2013;160(6):C215–25.  https://doi.org/10.1149/2.033306jes.CrossRefGoogle Scholar
  77. 77.
    Harris DC. Quantitative chemical analysis. 8th ed. New York: W. H. Freeman and Company; 2010.Google Scholar
  78. 78.
    Chu M, Miller M, Douglas T, Dutta P. Ultraslow dynamics at a charged silicon-ionic liquid Interface revealed by X-ray reflectivity. J Phys Chem C. 2017;121(7):3841–5.  https://doi.org/10.1021/acs.jpcc.6b10443.CrossRefGoogle Scholar
  79. 79.
    Drueschler M, Borisenko N, Wallauer J, Winter C, Huber B, Endres F, et al. New insights into the interface between a single-crystalline metal electrode and an extremely pure ionic liquid: slow interfacial processes and the influence of temperature on interfacial dynamics. Phys Chem Chem Phys. 2012;14(15):5090–9.  https://doi.org/10.1039/c2cp40288b.CrossRefGoogle Scholar
  80. 80.
    Makino S, Kitazumi Y, Nishi N, Kakiuchi T. Charging current probing of the slow relaxation of the ionic liquid double layer at the Pt electrode. Electrochem Commun. 2011;13(12):1365–8.  https://doi.org/10.1016/j.elecom.2011.08.009.CrossRefGoogle Scholar
  81. 81.
    Mueller C, Nemeth K, Vesztergom S, Pajkossy T, Jacob T. The interface between HOPG and 1-butyl-3-methyl-imidazolium hexafluorophosphate. Phys Chem Chem Phys. 2016;18(2):916–25.  https://doi.org/10.1039/C5CP05406K.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IowaIowa CityUSA

Personalised recommendations