Skip to main content
Log in

Phase identification of individual crystalline particles by combining EDX and EBSD: application to workplace aerosols

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper discusses the combined use of electron backscatter diffraction (EBSD) and energy dispersive X-ray microanalysis (EDX) to identify unknown phases in particulate matter from different workplace aerosols. Particles of α-silicon carbide (α-SiC), manganese oxide (MnO) and α-quartz (α-SiO2) were used to test the method. Phase identification of spherical manganese oxide particles from ferromanganese production, with diameter less than 200 nm, was unambiguous, and phases of both MnO and Mn3O4 were identified in the same agglomerate. The same phases were identified by selected area electron diffraction (SAED) in transmission electron microscopy (TEM). The method was also used to identify the phases of different SiC fibres, and both β-SiC and α-SiC fibres were found. Our results clearly demonstrate that EBSD combined with EDX can be successfully applied to the characterisation of workplace aerosols.

Secondary electron image of an agglomerate of manganese oxide particles collected at a ferromanganese smelter (a). EDX spectrum of the particle highlighted by an arrow (b). Indexed patterns after dynamic background subtraction from three particles shown with numbers in a (c)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dingley DJ, Baba-Kishi KZ, Randle V. Atlas of backscattering Kikuchi diffraction patterns. Bristol, Eng; Philadelphia: Institute of Physics Pub; 1995.

  2. Wisniewski W, Saager S, Böbenroth A, Rüssel C. Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). Ultramicroscopy. 2017;173(Supplement C):1–9. https://doi.org/10.1016/j.ultramic.2016.11.004.

    Article  CAS  Google Scholar 

  3. Chen D, Kuo J-C. The effect of atomic mass on the physical spatial resolution in EBSD. Microsc Microanal. 2013;19(S5):4–7. https://doi.org/10.1017/S143192761301221X.

    Article  Google Scholar 

  4. Humphreys FJ. Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scripta Mater. 2004;51(8):771–6. https://doi.org/10.1016/j.scriptamat.2004.05.016.

    Article  CAS  Google Scholar 

  5. Keller RR, Geiss RH. Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc. 2012;245(3):245–51. https://doi.org/10.1111/j.1365-2818.2011.03566.x.

    Article  CAS  Google Scholar 

  6. van Bremen R, Ribas Gomes D, de Jeer LTH, Ocelík V, De Hosson JTM. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy. 2016;160:256–64. https://doi.org/10.1016/j.ultramic.2015.10.025.

    Article  Google Scholar 

  7. Sneddon GC, Trimby PW, Cairney JM. Transmission Kikuchi diffraction in a scanning electron microscope: a review. Mater Sci Eng R-Rep. 2016;110:1–12. https://doi.org/10.1016/j.mser.2016.10.001.

    Article  Google Scholar 

  8. Dingley DJ, Wright SI. Determination of crystal phase from an electron backscatter diffraction pattern. J Appl Crystallogr. 2009;42(2):234–41. https://doi.org/10.1107/S0021889809001654.

    Article  CAS  Google Scholar 

  9. Michael JR, Goehner RP. Electron backscatter diffraction: a powerful tool for phase identification in the SEM. MRS Proc 1999;589. https://doi.org/10.1557/PROC-589-39.

  10. Small JA, Michael JR. Phase identification of individual crystalline particles by electron backscatter diffraction. J Microsc. 2001;201:59–69. https://doi.org/10.1046/j.1365-2818.2001.00788.x.

    Article  CAS  Google Scholar 

  11. Small JA, Michael JR, Bright DS. Improving the quality of electron backscatter diffraction (EBSD) patterns from nanoparticles. J Microsc. 2002;206:170–8. https://doi.org/10.1046/j.1365-2818.2002.01015.x.

    Article  CAS  Google Scholar 

  12. Bauer F, Hiscock M, Lang C. Advances in the analysis of gunshot residue and other trace evidence using EDS and EBSD in the SEM. Microsc Microanal. 2016;22(S3):2046–7. https://doi.org/10.1017/S1431927616011065.

    Article  Google Scholar 

  13. Bandli BR, Gunter ME. Electron backscatter diffraction from unpolished particulate specimens: examples of particle identification and application to inhalable mineral particulate identification. Am Mineral. 2012;97(8–9):1269–73. https://doi.org/10.2138/am.2012.4155.

    Article  CAS  Google Scholar 

  14. Bandli BR, Gunter ME. Scanning electron microscopy and transmitted electron backscatter diffraction examination of asbestos standard reference materials, amphibole particles of differing morphology, and particle phase discrimination from talc ores. Microsc Microanal. 2014;20(6):1805–16. https://doi.org/10.1017/S1431927614013415.

    Article  CAS  Google Scholar 

  15. Donaldson K, Borm P. Particle toxicology. Boca Raton, Florida: CRC Press; 2006.

    Book  Google Scholar 

  16. Ortner HM, Welter E. Direct speciation of solids. Handbook of elemental speciation: techniques and methodology. USA: John Wiley & Sons, Ltd; 2004. p. 505–46.

    Google Scholar 

  17. Føreland S, Bye E, Bakke B, Eduard W. Exposure to fibres, crystalline silica, silicon carbide and sulphur dioxide in the Norwegian silicon carbide industry. Ann Occup Hyg. 2008;52(5):317–36. https://doi.org/10.1093/annhyg/men029.

    Google Scholar 

  18. Gjønnes K, Skogstad A, Hetland S, Ellingsen DG, Thomassen Y, Weinbruch S. Characterisation of workplace aerosols in the manganese alloy production industry by electron microscopy. Anal Bioanal Chem. 2011;399(3):1011–20. https://doi.org/10.1007/s00216-010-4470-5.

    Article  Google Scholar 

  19. Drown DB, Oberg SG, Sharma RP. Pulmonary clearance of soluble and insoluble forms of manganese. J Toxicol Environ Health. 1986;17(2–3):201–12.

    Article  CAS  Google Scholar 

  20. Roels H, Meiers G, Delos M, Ortega I, Lauwerys R, Buchet JP, et al. Influence of the route of administration and the chemical form (MnCl2, MnO2) on the absorption and cerebral distribution of manganese in rats. Arch Toxicol. 1997;71(4):223–30. https://doi.org/10.1007/s002040050380.

    Article  CAS  Google Scholar 

  21. Bertau M, Müller A, Fröhlich P, Katzberg M. Anorganische Festkörper. Industrielle Anorganische Chemie. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2013. p. 457–720.

    Book  Google Scholar 

  22. Skogstad A, Foreland S, Bye E, Eduard W. Airborne fibres in the Norwegian silicon carbide industry. Ann Occup Hyg. 2006;50(3):231–40. https://doi.org/10.1093/annhyg/mei081.

    CAS  Google Scholar 

  23. Bye E, Eduard W, Gjonnes J, Sorbroden E. Occurrence of airborne silicon-carbide fibers during industrial-production of silicon-carbide. Scand J Work Environ Health. 1985;11(2):111–5.

    Article  CAS  Google Scholar 

  24. Dufresne A, Perrault G, Sébastien P, Adnot A, Baril M. Morphology and surface characteristics of particulates from silicon carbide industries. Am Ind Hyg Assoc J. 1987;48(8):718–29. https://doi.org/10.1080/15298668791385471.

    Article  CAS  Google Scholar 

  25. Romundstad P, Andersen A, Haldorsen T. Cancer incidence among workers in the Norwegian silicon carbide industry. Am J Epidemiol. 2001;153(10):978–86.

    Article  CAS  Google Scholar 

  26. Bugge MD, Kjærheim K, Føreland S, Eduard W, Kjuus H. Lung cancer incidence among Norwegian silicon carbide industry workers: associations with particulate exposure factors. Occup Environ Med. 2012;69(8):527–33.

    Article  CAS  Google Scholar 

  27. Gunnæs AE, Olsen A, Skogstad A, Bye E. Morphology and structure of airborne β-SiC fibres produced during the industrial production of non-fibrous silicon carbide. J Mater Sci. 2005;40(22):6011–7. https://doi.org/10.1007/s10853-005-4591-y.

    Article  Google Scholar 

  28. Bye E, Foreland S, Lundgren L, Kruse K, Ronning R. Quantitative determination of airborne respirable non-fibrous alpha-silicon carbide by x-ray powder diffractometry. Ann Occup Hyg. 2009;53(4):403–8. https://doi.org/10.1093/annhyg/mep022.

    CAS  Google Scholar 

  29. Miller A, Frey G, King G, Sunderman C. A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol. 2010;44(6):417–27. https://doi.org/10.1080/02786821003692063.

    Article  CAS  Google Scholar 

  30. Hough P. Inventor Methods and means for recognizing complex patterns 1962.

  31. Wisniewski W, Keshavarzi A, Zscheckel T, Rüssel C. EBSD-based phase identification in glass-ceramics of the Y2O3-Al2O3-SiO2 system containing α- and β-Y2Si2O7. J Alloys Compd. 2017;699(Supplement C):832–40. https://doi.org/10.1016/j.jallcom.2016.12.301.

    Article  CAS  Google Scholar 

  32. Wisniewski W, Patschger M, Murdzheva S, Thieme C, Rüssel C. Oriented nucleation of both Ge-fresnoite and benitoite/BaGe4O9 during the surface crystallisation of glass studied by electron backscatter diffraction. Sci Rep. 2016;6:20125. https://doi.org/10.1038/srep20125.

    Article  CAS  Google Scholar 

  33. Field DP. Recent advances in the application of orientation imaging. Ultramicroscopy. 1997;67(1):1–9. https://doi.org/10.1016/S0304-3991(96)00104-0.

    Article  CAS  Google Scholar 

  34. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  Google Scholar 

  35. Mitchell DRG. DiffTools: electron diffraction software tools for DigitalMicrograph (TM). Microsc Res Tech. 2008;71(8):588–93. https://doi.org/10.1002/jemt.20591.

    Article  CAS  Google Scholar 

  36. Shaffer P. A review of the structure of silicon carbide. Acta Crystallogr Sect B: Struct Sci. 1969;25(3):477–88. https://doi.org/10.1107/S0567740869002457.

    Article  CAS  Google Scholar 

  37. Höflich BLW, Wentzel M, Ortner HM, Weinbruch S, Skogstad A, Hetland S, et al. Chemical composition of individual aerosol particles from working areas in a nickel refinery. J Environ Monit. 2000;2(3):213–7. https://doi.org/10.1039/B001146K.

    Article  Google Scholar 

  38. Fan J, Chu PK. General properties of bulk SiC. Silicon carbide nanostructures: fabrication, structure, and properties. Cham: Springer International Publishing; 2014. p. 7–114.

    Google Scholar 

  39. Weimer AW. Carbide, nitride and boride materials synthesis and processing: Chapman & Hall; 1997.

  40. Post JE. Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci. 1999;96(7):3447–54. https://doi.org/10.1073/pnas.96.7.3447.

    Article  CAS  Google Scholar 

  41. Baron V, Gutzmer J, Rundlof H, Tellgren R. The influence of iron substitution on the magnetic properties of hausmannite, Mn2+(Fe,Mn)2 (3+)O4. Am Mineral. 1998;83(7–8):786–93.

    Article  CAS  Google Scholar 

  42. Chen GS, Boothroyd CB, Humphreys CJ. Novel fabrication method for nanometer-scale silicon dots and wires. Appl Phys Lett. 1993;62(16):1949–51. https://doi.org/10.1063/1.109500.

    Article  CAS  Google Scholar 

  43. X-w D, Takeguchi M, Tanaka M, Furuya K. Formation of crystalline Si nanodots in SiO2 films by electron irradiation. Appl Phys Lett. 2003;82(7):1108–10. https://doi.org/10.1063/1.1555691.

    Article  Google Scholar 

  44. IARC. Monographs on the evaluation of carciogenic risks to humans: some nanomaterials and some fibres. Lyon: International Agency for Research and Cancer (WHO); 2017.

    Google Scholar 

  45. Goldstein JI, Newbury DE, Michael JR, NWM R, JHJ S, Joy DC. Scanning electron microscopy and X-ray microanalysis. New York: Springer; 2017.

    Google Scholar 

Download references

Acknowledgments

The financial support by the Confederation of Norwegian Enterprise Working Environment Fund is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torunn Kringlen Ervik.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ervik, T.K., Benker, N., Weinbruch, S. et al. Phase identification of individual crystalline particles by combining EDX and EBSD: application to workplace aerosols. Anal Bioanal Chem 410, 2711–2721 (2018). https://doi.org/10.1007/s00216-018-0949-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0949-2

Keywords

Navigation