Skip to main content

Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories


Volatile organic compounds (VOCs) in gas mixtures at trace level (nmol/mol) are routinely measured by chemical and biochemical laboratories as climate indicators, indoor air quality pollutants from building materials emissions, contaminants in food and beverages, and biomarkers in body fluids (blood, urine, breath) of occupational exposure or human diseases. Current analytical instruments used for measurements are gas chromatographs equipped with various injector and detector configurations. The assurance of measurement quality is done by using a huge amount of certified liquid VOC standard solutions (or gaseous VOC standard cylinders) with multiple dilutions to reach the required trace level. This causes high standard uncertainty in instrument calibrations, high cost, and high consumption of analysis and laboratory personal time. In this paper, we present the implementation of portable generators producing VOC gas standards at trace level for automatic and direct calibration of VOC detectors employed in various contexts, removing the need for preparation of matrix calibration standards in cylinders. Two compact devices in-house developed by two national metrology institutes—the Istituto Nazionale di Ricerca Metrologica (INRIM) and the Federal Institute of Metrology (METAS)—are here used to dynamically generate reference gas mixtures in an SI traceable way. The two devices are based on different technologies: diffusion and permeation, for INRIM and METAS, respectively. A metrological characterization is given and the practical implementation at chemical and biochemical laboratories is discussed.

Onsite calibration with transportable generation system with similar performances to primary laboratory devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Barrie L, Braathen G. Highlights from the Global Atmosphere Watch Programme; 2017.

  2. Penkett S, Barrie L. WMO/GAW Expert Workshop on Global Long-term Measurements of Volatile Organic Compounds, WMO TD No. 1373. WMO; 2007.

  3. Wolkoff P. Trends in Europe to reduce the indoor air pollution of VOCs. Indoor Air. 2003;13(Suppl 6):5–11.

    Article  Google Scholar 

  4. European Metrology Research Programme. ENV56 KEY-VOCs research project 2014–2017. n.d.

  5. Yu C, Crump D. A review of the emission of VOCs from polymeric materials used in buildings. Build Environ. 1998;33:357–74.

    Article  Google Scholar 

  6. Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Wooten JV. Blood concentrations of volatile organic compounds in a nonoccupationally exposed US population and in groups with suspected exposure. Clin Chem. 1994;40:1401–4.

    CAS  Google Scholar 

  7. Heinrich-Ramm R, Jakubowski M, Heinzow B, Christensen JM, Olsen E, Hertel O. Biological monitoring for exposure to volatile organic compounds (VOCs) (IUPAC recommendations 2000). Pure Appl Chem. 2000;72:385–436.

    Article  CAS  Google Scholar 

  8. Sklerov JH, Couper FJ. Calculation and verification of blood ethanol measurement uncertainty for headspace gas chromatography. J Anal Toxicol. 2011;35:402–10.

    Article  CAS  Google Scholar 

  9. Mathew T, Pownraj P, Abdulla S, Pullithadathil B. Technologies for clinical diagnosis using expired human breath analysis. Diagnostics. 2015;5:27–60.

    Article  Google Scholar 

  10. Schmidt K, Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J Biomarkers. 2015;2015:981458.

    Article  Google Scholar 

  11. Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Meta. 2015;5:3–55.

    Google Scholar 

  12. Taipale R, Ruuskanen TM, Rinne J, Kajos MK, Hakola H, Pohja T, et al. Technical note: quantitative long-term measurements of VOC concentrations by PTR-MS—measurement, calibration, and volume mixing ratio calculation methods. Atmos Chem Phys. 2008;8:6681–98.

    Article  CAS  Google Scholar 

  13. Höllbacher E, Ters T, Rieder-Gradinger C, Srebotnikb E. Emissions of indoor air pollutants from six user scenarios in a model room. Atmos Environ. 2017;150:389–94.

    Article  Google Scholar 

  14. Gras R, Luong J, Shellie RA. Gas chromatography and diode array detection for the direct measurement of carbon disulfide in challenging matrices. Anal Methods. 2017;9:3908–13.

    Article  CAS  Google Scholar 

  15. Ross BM, Babgi R. Volatile compounds in blood headspace and nasal breath. J Breath Res. 2017;11:46001.

    Article  Google Scholar 

  16. Spinelle L, Gerboles M, Kok G, Persijn S, Sauerwald T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors. 2017;17:1520.

    Article  Google Scholar 

  17. Cristofanelli P, Brattich E, Decesari S, Landi TC, Maione M, Putero D, et al. Investigation of atmospheric reactive gases at Mt. Cimone. Springer: Cham; 2018. p. 45–73.

    Google Scholar 

  18. Mansour SA. Residual pesticides and heavy metals analysis in food. Analysis of Food Toxins and Toxicants. Chichester, UK: John Wiley & Sons, Ltd; 2017. p. 537–70.

    Book  Google Scholar 

  19. Horn W, Richter M, Nohr M, Wilke O, Jann O. Application of a novel reference material in an international round robin test on material emissions testing. Indoor Air. 2017;

  20. Richter M, Mull B, Horn W, Brödner D, Mölders N, Renner M. Reproducibly emitting reference material on thermoplastic polyurethane basis for quality assurance/quality control of emission test chamber measurements. Build Environ. 2017;122:230–6.

    Article  Google Scholar 

  21. Haider SI, Asif ES. Quality control training manual: comprehensive training guide for API, finished pharmaceutical and biotechnologies laboratories. Boca Raton: CRC Press; 2011.

    Google Scholar 

  22. Hwang R-J, Beltran J, Rogers C, Barlow J, Razatos G. Measurement of uncertainty for aqueous ethanol wet-bath simulator solutions used with evidential breath testing instruments. J Forensic Sci. 2016;61:1359–63.

    Article  CAS  Google Scholar 

  23. Sassi G, Demichelis A, Sassi MP. Uncertainty analysis of the diffusion rate in the dynamic generation of volatile organic compound mixtures. Meas Sci Technol. 2011;22:105104.

    Article  Google Scholar 

  24. Nelson GO. Gas mixtures: preparation and control. Lewis Publishers; 1992.

  25. International Organization of Legal Metrology. Evidential breath analyzers: Ethylometers. OIML R 126 2012;126.

  26. Demichelis A, Sassi G, Lecuna M, Sassi MP. Molar fraction stability in dynamic preparation of reference trace gas mixtures. IET Sci Meas Technol. 2016;10:414–9.

    Article  Google Scholar 

  27. Sassi G, Demichelis A, Lecuna M, Sassi MP. Preparation of standard VOC mixtures for climate monitoring. Int J Environ Anal Chem. 2015;95:1195–207.

    Article  CAS  Google Scholar 

  28. Sassi G, Demichelis A, Sassi MP. Air flow rate thermal control system at low pressure drop. Flow Meas Instrum. 2014;35:44–7.

    Article  Google Scholar 

  29. Demichelis A, Sassi G, Sassi MP. A handy method for reproducible and stable measurements of VOC at trace level in air. Springer International Publishing; 2014, p. 109–13. doi:

  30. Demichelis A, Sassi G, Sassi MP. Metrological performances of mass flow controllers for dynamic gas dilution. Accred Qual Assur. 2013:181–6.

  31. Gautrois M, Koppmann R. Diffusion technique for the production of gas standards for atmospheric measurements. J Chromatogr A. 1999;848:239–49.

    Article  CAS  Google Scholar 

  32. Sassi G, Vernai AM, Ruggeri B. Quantitative estimation of uncertainty in human risk analysis. J Hazard Mater. 2007;145:296–304.

    Article  CAS  Google Scholar 

  33. European Metrology Research Programme, ENV01. MACPoll Metrology of Chemical Pollutants in Air. 2011–2014 n.d.

  34. Pascale C, Guillevic M, Ackermann A, Leuenberger D, Niederhauser BC. Two generators to produce SI-traceable reference gas mixtures for reactive compounds at atmospheric levels. Meas Sci Technol. 2017;

  35. CMOS. Technology Working Principle and its Applications n.d. Accessed 30 Sept 2017.

  36. Haerri H-P, Macé T, Waldén J, Pascale C, Niederhauser B, Wirtz K, et al. Dilution and permeation standards for the generation of NO, NO2 and SO2 calibration gas mixtures. Meas Sci Technol. 2017;28:35801.

    Article  Google Scholar 

  37. Zhang NF. Allan variance of time series models for measurement data. Metrologia. 2008;45:549–61.

    Article  Google Scholar 

  38. Lucero DP. Performance characteristics of permeation tubes. Anal Chem. 1971;43:1744–9.

    Article  CAS  Google Scholar 

  39. International Organization for Standardization (ISO). ISO 6145-10:2002—Gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 10: permeation method. 2002.

  40. International Organization for Standardization (ISO). ISO 6145-8:2005—Gas analysis—preparation of calibration gas mixtures using dynamic volumetric methods—part 8: diffusion method. 2005.

  41. Stan H-J. Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection: state-of-the-art use of modified DFG-multimethod S19 and automated data evaluation. J Chromatogr A. 2000;892:347–77.

    Article  CAS  Google Scholar 

  42. Valverde A, Aguilera A, Valverde-Monterreal A. Practical and valid guidelines for realistic estimation of measurement uncertainty in multi-residue analysis of pesticides. Food Control. 2017;71:1–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Maricarmen Lecuna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demichelis, A., Pascale, C., Lecuna, M. et al. Compact devices for generation of reference trace VOC mixtures: a new concept in assuring quality at chemical and biochemical laboratories. Anal Bioanal Chem 410, 2619–2628 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: