Skip to main content

Advertisement

Log in

Current status of water environment and their microbial biosensor techniques – Part I: Current data of water environment and recent studies on water quality investigations in Japan, and new possibility of microbial biosensor techniques

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In my 2010 review, I addressed conventional water analysis and biosensing of organic pollutants in Japan between 1960s and 2000s. It is now timely to reexamine current analytical and biomonitoring approaches in view of the new challenges in assessing pollution, particularly in closed water bodies, as pollutants tend to accumulate in these endorheic basins. In the present review series, I presented current water environment and its microbial biosensors. In this part, I presented current data of the water quality of these water bodies in Japan and established the need to further develop microbial biosensor technologies to address and monitor water quality here.

Current water pollution indirectly occurring by anthropogenic eutrophication (Part I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A2O:

Anaerobic-Anoxic-Oxic

AHS:

Aquatic humic substances (hydrophobic acids; HoA: contains humic & fulvic acids)

BaS:

Bases (Hob and HiB)

BOD:

Biochemical oxygen demand

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

FY:

Fiscal year

HABs:

Harmful algal blooms

HiA:

Hydrophilic acids

HiB:

Hydrophilic base

HiF:

HiA+BaS+HiN

HiN:

Hydrophilic neutrals

HoA:

Hydrophobic acids

HoB:

Hydrophobic bases

HoN:

Hydrophobic neutrals

LASs:

Linear alkylbenzene sulfonates

NP:

Nonylphenol

SAS:

Standard activated sludge

SOM:

Sediment organic matter

TN:

Total nitrogen

TP:

Total phosphorus

TDAA:

Total dissolved amino acids

TDNS:

Total dissolved neutral sugars

THMFP:

Trihalomethane formation potential

TZn:

Total zinc

References

  1. Shiga Prefecture: (2009) White Paper on Environment (in Japanese). Fiscal Year (FY) 2009 ed. Shiga Prefecture.

  2. Nakamura H. Recent organic pollution and its biosensing methods. Anal Methods. 2010;2:430–44.

    Article  CAS  Google Scholar 

  3. Japan. Water Pollution Control Law. In: Environmental Law No. 138. Japan: (1970) Available at: https://www.env.go.jp/en/laws/water/wlaw/. Accessed 1 Nov 2017.

  4. Japan. The Basic Environment Law. In: Environmental Law No. 91. Japan (1993) Available at: https://www.env.go.jp/en/laws/policy/basic/index.html. Accessed 1 Nov 2017.

  5. Japan Sewage Works Association (JSWA) (2001) Guidelines for sewer facility design guidelines and commentary (in Japanese). FY 2001 ed. JSWA

  6. Japan Sewage Works Association (JSWA) (2015) Advanced treatment service start list (in Japanese). FY 2015 ed. JSWA

  7. Organization of Bureau of Sewerage. Water quality value of influent or effluent in FY 2015 ed (in Japanese). Tokyo Metropolitan Government: (2015) Available at: http://www.gesui.metro.tokyo.jp/business/technology-statistics/fukyu/27data/ku_waqa/13ave/. Accessed 1 Nov 2017

  8. MOE: 1971. Uniform National Effluent Standards. In: National Effluent Standards. Available at: https://www.env.go.jp/en/water/wq/nes.html. Accessed 1 Nov 2017

  9. MOE: 2017. White Paper on Environment (in Japanese). FY 2017 ed. English and Outline version of FY 2016 ed. is available at: https://www.env.go.jp/en/wpaper/. Accessed 1 Nov 2017

  10. MOE: (2016) Environmental water quality measurement results for public water bodies (in Japanese). FY 2015 ed. Available at: https://www.env.go.jp/water/suiiki/h27/h27-1.pdf. Accessed 1 Nov 2017

  11. MOE: (1995) Enforcement regulations of the special measures concerning the conservation of water quality in water bodies for water supply. In: Provision method specified by the Minister of the Environment based on the provisions of Article 5 (in Japanese)

  12. MOE: (2003) Environmental water quality standard to protect aquatic organisms (total zinc). In: Basic Environment Law Article 16 (in Japanese)

  13. Eisler R (1993) Zinc hazards to fish, wildlife, and invertebrates: a synoptic review. Biol Rep. 10. US Fish Wildl Serv; Available at: https://pubs.er.usgs.gov/publication/5200116. Accessed 1 Nov 2017

  14. Maguire RJ. Review of the persistence of nonylphenol and nonylphenol ethoxylates. Water Qual Res J Can. 1999;34:37–78.

    CAS  Google Scholar 

  15. United States Environmental Protection Agency (USEPA): (2010) Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) action plan (RIN 2070-ZA09)

  16. Schröder RD. Basic principles of LAS biodegradation. Tenside Deterg. 1989;26:86–94.

    Google Scholar 

  17. MOE: (2008) Environmental risk assessment office. LAS and its salts. In: Environmental risk assessment of chemical substances (in Japanese). vol. 6. pp. 1–20

  18. Imai A, Fukushima T, Matsushige K, Kim YH. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources. Water Res. 2001;35:4019–28. https://doi.org/10.1016/S0043-1354(01)00139-7.

    Article  CAS  PubMed  Google Scholar 

  19. Shiga Prefecture: (1996) Study report on organic pollution in the Lake Biwa (in Japanese). FY 1996 ed.

  20. Leenheer JA. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environ Sci Technol. 1981;15:578–87.

    Article  CAS  PubMed  Google Scholar 

  21. Thurman EM (1985) Aquatic humic substances. In: Organic geochemistry of natural waters. Developments in biogeochemistry, vol 2. Springer: Dordrecht, pp. 273–361. https://doi.org/10.1007/978-94-009-5095-5_11.

  22. Imai A, Fukushima T, Matsushige K, Inoue T, Ishibashi T. Fractionation of dissolved organic carbon from waters of Lake Biwa and its inflowing rivers. Jpn J Limnol. 1998;59:69–78.

    Article  Google Scholar 

  23. Senesi N, Miano TM, Provenzano MR, Brunetti G. Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origin. Sci Total Environ. 1989;81/82:143–56.

    Article  Google Scholar 

  24. Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste, and polluted waters – a review. River Res Appl. 2007;23:631–49.

    Article  Google Scholar 

  25. Li P, Hur J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies – a review. Crit Rev Environ Sci Technol. 2017;47:131–54.

    Article  CAS  Google Scholar 

  26. Kim YH, Lee SH, Imai A, Kazuo M. Characterization of dissolved organic matter in a shallow eutrophic lake and inflowing waters. Environ Eng Res. 2002;7:93–101.

    Article  Google Scholar 

  27. Imai A, Fukushima T, Matsushige K, Kim YH, Choi K. Characterization of dissolved organic matter in effluents from wastewater treatment plants. Water Res. 2002;36:859–70.

    Article  CAS  PubMed  Google Scholar 

  28. Imai A, Matsushige K, Nagai T. Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Res. 2003;37:4284–94.

    Article  CAS  PubMed  Google Scholar 

  29. Nalewajko C, Lean DRS. Growth and excretion in planktonic algae and bacteria. J Phycol. 1972;8:361–6.

    CAS  Google Scholar 

  30. Munster U, Chrost RJ. Origin, composition, and microbial utilization of dissolved organic matter. In: Overbeck J, Chrost RJ, editors. Aquatic microbial ecology. New York: Springer; 1990. p. 8–46.

    Chapter  Google Scholar 

  31. Zlotnik I, Dubinsky Z. The effect of light and temperature on DOC excretion by phytoplankton. Limnol Oceanogr. 1989;34:831–9.

    Article  CAS  Google Scholar 

  32. Choi K, Ueki M, Imai A, Kim B, Kawabata Z. Photo-alteration of dissolved organic matter (DOM) released from Microcystis aeruginosa in different growth phases: DOM-fraction distribution and biodegradability. Arch Hydrobiol. 2004;159:271–86.

    Article  CAS  Google Scholar 

  33. Tomioka N, Imai A, Komatsu K. Effect of light availability on Microcystis aeruginosa blooms in shallow hypereutrophic Lake Kasumigaura. J Plankton Res. 2011;33:1263–73.

    Article  Google Scholar 

  34. Nara FW, Imai A, Uchida M, Matsushige K, Komatsu K, Kawasaki N, et al. High contribution of recalcitrant organic matter to DOC in a Japanese oligotrophic lake revealed by 14C measurements. Radiocarbon. 2010;52:1078–83.

    Article  CAS  Google Scholar 

  35. Kawai M, Kawasaki N, Imai A, Tada T. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater. J Environ Manag. 2016;181:838–46.

    Article  CAS  Google Scholar 

  36. Kawasaki N, Matsushige K, Komatsu K, Kohzu A, Nara FW, Ogishi F, et al. Fast and precise method for HPLC–size exclusion chromatography with UV and TOC (NDIR) detection: importance of multiple detectors to evaluate the characteristics of dissolved organic matter. Water Res. 2011;45:6240–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kawasaki N, Komatsu K, Kohzu A, Tomioka N, Shinohara R, Satou T, et al. Bacterial contribution to dissolved organic matter in eutrophic Lake Kasumigaura, Japan. Appl Environ Microbiol. 2013;79:7160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser. 1988;43:1–10.

    Article  Google Scholar 

  39. Shimotori K, Satou T, Imai A, Kawasaki N, Komatsu K, Kohzu A, et al. Quantification and characterization of coastal dissolved organic matter by high-performance size exclusion chromatography with ultraviolet absorption, fluorescence, and total organic carbon analyses. Limnol Oceanogr. 2016;14:637–48.

    Article  CAS  Google Scholar 

  40. Newton RJ, Jones SE, Eiler A, KD MM, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zwart G, Crump BC, Agterveld MPK, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002;28:141–55.

    Article  Google Scholar 

  42. Gonzalez JM, Moran MA. Numerical dominance of a group of marine bacteria in the α-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol. 1997;63:4237–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hobbie JE. A comparison of the ecology of planktonic bacteria in fresh and salt water. Limnol Oceanogr. 1988;33:750–64.

    CAS  Google Scholar 

  44. Watanabe K, Komatsu N, Kitamura T, Ishii Y, Park HD, Miyata R, et al. Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol. 2012; https://doi.org/10.1111/j.1462-2920.2012.02815.x.

  45. Baldock JA, Masiello CA, Géinas Y, Hedges JI. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem. 2004;92:39–64.

    Article  CAS  Google Scholar 

  46. Meyers-Schultke J, Hedges JI. Molecular evidence for a terrestrial component of organic matter dissolved in seawater. Nature. 1986;321:61–3.

    Article  Google Scholar 

  47. Opsahl S, Benner R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature. 1997;386:480–2.

    Article  CAS  Google Scholar 

  48. Shimotori K, Omori Y, Hama T. Bacterial production of marine humic-like fluorescent dissolved organic matter and its biogeochemical importance. Aquat Microb Ecol. 2010;58:55–66.

    Article  Google Scholar 

  49. Tranvik LJ. Microbial transformation of labile dissolved organic matter into humic-like matter in seawater. FEMS Microbiol Ecol. 1993;12:177–83.

    Article  CAS  Google Scholar 

  50. Kristensen P, Søndergaard M, Jeppesen E. Resuspension in a shallow eutrophic lake. Hydrobiologia. 1992;228:101–9.

    Article  CAS  Google Scholar 

  51. Nakazono T, Abe C, Suzuki Y. Characteristics of nutrients, iron, and manganese release from sediment during resuspension in Lake Kasumigaura (in Japanese with English Abstract). Environ Instrument Contr Automat. 2009;14:45–52.

    Google Scholar 

  52. Shimotori K, Imai A, Kohzu A, Komatsu K, Satou T, Tomioka N, et al. Development of a new method for measuring of sediment oxygen demand in lakes and its application (in Japanese with English Abstract). J Jpn Soc Water Environ. 2017;40:21–9.

    Article  Google Scholar 

  53. Tada C, Itayama T, Nishimura O, Inamori Y, Sugiura N, Matsumura M. The effect of manganese released from lake sediment on the growth of cyanobacterium Microcysitis aeruginosa. Jpn J Water Treat Biol. 2002;38:95–102.

    Article  Google Scholar 

  54. Thottathil SD, Hayakawa K, Hodoki Y, Yoshimizu C, Kobayashi Y, Nakano S. Biogeochemical control on fluorescent dissolved organic matter dynamics in a large freshwater lake (Lake Biwa, Japan). Limnol Oceanogr. 2013;58:2262–78.

    Article  CAS  Google Scholar 

  55. Watanabe Y, Watanabe MF, Watanabe M. The distribution and relative abundance of bloom forming Microcystis species in several eutrophic waters. Jpn J Limnol. 1986;47:87–93.

    Article  Google Scholar 

  56. Pawlik-Skowrońska B, Pirszel J, Kornijów R. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann Limnol Int J Limnol. 2008;44:145–50.

    Article  Google Scholar 

  57. Yéprémian C, Gugger MF, Briand E, Catherine A, Bergera C, Quibliera C, et al. Microcystin ecotypes in a perennial Planktothrix agardhii bloom. Water Res. 2007;41:4446–56.

    Article  CAS  PubMed  Google Scholar 

  58. Imai A, Fukushima T, Matsushige K. Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Can J Fish Aquat Sci. 1999;56:1929–37.

    Article  CAS  Google Scholar 

  59. Nagai T, Imai A, Matsushige K, Fukushima T. Effect of iron complexation with dissolved organic matter on the growth of cyanobacteria in a eutrophic lake. Aquat Microb Ecol. 2006;44:231–9.

    Article  Google Scholar 

  60. Nagai T, Imai A, Matsushige K, Fukushima T. Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology. 2007;8:261–70. https://doi.org/10.1007/s10201-007-0217-1.

    Article  CAS  Google Scholar 

  61. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management. WHO: London and New York http://www.who.int/water_sanitation_health/publications/toxicyanobact/en/. Accessed: 1 Nov 2017

  62. Mostofa KMG, Yoshioka T, Mottaleb A, Vione D (2013) Photobiogeochemistry of organic matter – principles and practices in water environments. In: Environmental Science and Engineering book series. Springer: Berlin. Available at: https://doi.org/10.1007/978-3-642-32223-5

  63. Dolman AM, Rucker J, Pick FR, Fastner J, Rohrlack T, Mischke U, et al. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS One. 2012;7:e38757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chorus I (2012) Current approaches to cyanotoxin risk assessment, risk management, and regulations in different countries. Federal Environment Agency (Umweltbundesamt), Dessau-Roßlau: Berlin. Available at: http://www.uba.de/uba-info-medien-e/4390.html

  65. Musenmai Association of Japan. Influences of the water washing rice on the environment (in Japanese) (2010) Musenmai Association of Japan. Available at: https://www.musenmai.com/staticpages/index.php/pollution_substance. Accessed 1 Nov 2017

  66. Tran NH, Ngo HH, Urase T, KYH G. A critical review on characterization strategies of organic matter for wastewater and water treatment processes. Bioresour Technol. 2015;193:523–33.

    Article  CAS  PubMed  Google Scholar 

  67. Urase T, Sasaki Y. Occurrence of earthy and musty odor compounds (geosmin, 2-methylisoborneol, and 2,4,6-trichloroanisole) in biologically treated wastewater. Water Sci Technol. 2013;68:1969–75.

    Article  CAS  PubMed  Google Scholar 

  68. Kikuchi T, Fujii M, Terao K, Jiwei R, Lee YP, Yoshimura C. Correlations between aromaticity of dissolved organic matter and trace metal concentrations in natural and effluent waters: a case study in the Sagami River Basin, Japan. Sci Total Environ. 2017;576:36–45.

    Article  CAS  PubMed  Google Scholar 

  69. Steele MW. The history of the Tama River: social reconstructions. In: Tvedt T, Jakobsson E, Coopey R, editors. A history of water: Vol. I: Water control and river biographies. London: I.B. Tauris; 2006. p. 217–38.

    Google Scholar 

  70. Tokyo Metropolitan Islands Area Research and Development Center for Agriculture, Forestry, and Fisheries. The results of the upstream migration of Edo-style Ayu (in Japanese). Tokyo Metropolitan Government: (2017) Available at: http://www.ifarc.metro.tokyo.jp/resources/content/20089/20170605-130105.pdf. Accessed 1 Nov 2017

  71. MOE. What is artificial tidal land? (In Japanese). MOE: (2017) Available at: https://www.env.go.jp/water/heisa/heisa_net/setouchiNet/seto/setonaikai/zousei-4.html. Accessed 1 Nov 2017

  72. Nakamura H, Karube I. Current research activity in biosensors. Anal Bioanal Chem. 2003;377:446–68.

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura H, Shimomura-Shimizu M, Karube I. Development of microbial sensors and their application. Adv Biochem Engin/Biotechnol. 2008;109:351–94.

    Article  CAS  Google Scholar 

  74. Nakamura H, Karube I. Microbial Biosensors. In: Grimes CA, Pishko DV, Pishko MV, editors. Encyclopedia of SENSORS, vol. 6. California: American Scientific Publishers; 2005. p. 87–126. http://www.aspbs.com/eos/.

    Google Scholar 

  75. Nakamura H: Current status of water environment and microbial biosensor techniques – Part II: Recent trends on the microbial biosensor developments .Anal Bioanal Chem, under review

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Nakamura.

Ethics declarations

Conflict of interest

The author declares that he has no competing interests.

Additional information

Published in the topical collection Microbial Biosensors for Analytical Applications with guest editor Gérald Thouand.

Electronic supplementary material

ESM 1

(PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, H. Current status of water environment and their microbial biosensor techniques – Part I: Current data of water environment and recent studies on water quality investigations in Japan, and new possibility of microbial biosensor techniques. Anal Bioanal Chem 410, 3953–3965 (2018). https://doi.org/10.1007/s00216-018-0923-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0923-z

Keywords

Navigation