Advances in the analysis of biological samples using ionic liquids

  • Kevin D. Clark
  • María J. Trujillo-Rodríguez
  • Jared L. Anderson
Trends
Part of the following topical collections:
  1. Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry

Abstract

Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis.

Graphical abstract

Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples

Keywords

Task-specific ionic liquid Magnetic ionic liquid Bioanalysis Automation Miniaturization Magnetic separation 

Notes

Acknowledgements

JLA acknowledges funding from the Chemical Measurement and Imaging Program at the National Science Foundation (grant no. CHE-1709372).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Davis JH. Task-specific ionic liquids. Chem Lett. 2004;33:1072–7.CrossRefGoogle Scholar
  2. 2.
    Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem. 2013;86:262–85.CrossRefGoogle Scholar
  3. 3.
    Baker SN, McCleskey TM, Pandey S, Baker GA. Fluorescence studies of protein thermostability in ionic liquids. Chem Commun. 2004.  https://doi.org/10.1039/b401304m.Google Scholar
  4. 4.
    Fujita K, MacFarlane DR, Forsyth M. Protein solubilising and stabilising ionic liquids. Chem Commun. 2005.  https://doi.org/10.1039/b508238b.Google Scholar
  5. 5.
    Zhou L, Danielson ND. The ionic liquid isopropylammonium formate as a mobile phase modifier to improve protein stability during reversed phase liquid chromatography. J Chromatogr B. 2013;940:112–20.CrossRefGoogle Scholar
  6. 6.
    Taha M, e Silva FA, Quental MV, SPM V, Freire MG, JAP C. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research. Green Chem. 2014;16:3149–59.CrossRefGoogle Scholar
  7. 7.
    Quental MV, Caban M, Pereira MM, Stepnowski P, JAP C, Freire MG. Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems. Biotechnol J. 2015;10:1457–66.CrossRefGoogle Scholar
  8. 8.
    Tseng M-C, Yuan T-C, Li Z, Chu Y-H. Crowned ionic liquids for biomolecular interaction analysis. Anal Chem. 2016;88:10811–5.CrossRefGoogle Scholar
  9. 9.
    Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane DR. Long-term structural and chemical stability of DNA in hydrated ionic liquids. Angew Chem Int Ed. 2010;49:1631–3.CrossRefGoogle Scholar
  10. 10.
    Chandran A, Ghoshdastidar D, Senapati S. Groove binding mechanism of ionic liquids: A key factor in long-term stability of DNA in hydrated ionic liquids? J Am Chem Soc. 2012;134:20330–9.CrossRefGoogle Scholar
  11. 11.
    Mazid RR, Divisekera U, Yang W, Ranganathan V, MacFarlane DR, Cortez-Jugo C, et al. Biological stability and activity of siRNA in ionic liquids. Chem Commun. 2014;50:13457–60.CrossRefGoogle Scholar
  12. 12.
    Machado I, Özalp VC, Rezabal E, Schäfer T. DNA aptamers are functional molecular recognition sensors in protic ionic liquids. Chem Eur J. 2014;20:11820–5.CrossRefGoogle Scholar
  13. 13.
    Shi Y, Liu Y-L, Lai P-Y, Tseng M-C, Tseng M-J, Li Y, et al. Ionic liquids promote PCR amplification of DNA. Chem Commun. 2012;48:5325–7.CrossRefGoogle Scholar
  14. 14.
    Wang J-H, Cheng D-H, Chen X-W, Du Z, Fang Z-L. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal Chem. 2007;79:620–5.CrossRefGoogle Scholar
  15. 15.
    Nacham O, Clark KD, Varona M, Anderson JL. Selective and efficient RNA analysis by solid-phase microextraction. Anal Chem. 2017;89:10661–6.CrossRefGoogle Scholar
  16. 16.
    Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal Chem. 2013;50:78–84.CrossRefGoogle Scholar
  17. 17.
    Gong A, Zhu X. Miniaturized ionic liquid dispersive liquid–liquid microextraction in a coupled-syringe system combined with UV for extraction and determination of danazol in danazol capsule and mice serum. Spectrochim Acta Part A. 2016;159:163–8.CrossRefGoogle Scholar
  18. 18.
    Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M. Ionic liquid-based dynamic liquid-phase microextraction: application to the determination of anti-inflammatory drugs in urine samples. J Chromatogr A. 2008;1202:1–7.CrossRefGoogle Scholar
  19. 19.
    Suárez R, Clavijo S, Avivar J, Cerdá V. On-line in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction HPLC-UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta. 2016;148:589–95.CrossRefGoogle Scholar
  20. 20.
    Liu S, Wang C, He S, Bai L, Liu H. On-line SPE using ionic liquid-based monolithic column for the determination of antihypertensives in human plasma. Chromatographia. 2016;79:441–9.CrossRefGoogle Scholar
  21. 21.
    Iranmanesh M, Hulliger J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem Soc Rev. 2017;46:5925–34.CrossRefGoogle Scholar
  22. 22.
    Yilmaz E, Soylak M. Ionic liquid-linked dual magnetic microextraction of lead(II) from environmental samples prior to its micro-sampling flame atomic absorption spectrometric determination. Talanta. 2013;116:882–6.CrossRefGoogle Scholar
  23. 23.
    Wang B, Wang X, Wang J, Xue X, Xi X, Chu Q, et al. Amino acid-based ionic liquid surface modification of magnetic nanoparticles for the magnetic solid-phase extraction of heme proteins. RSC Adv. 2016;6:105550–7.CrossRefGoogle Scholar
  24. 24.
    Amiri M, Yamini Y, Safari M, Asiabi H. Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids. Microchim Acta. 2016;183:2297–305.CrossRefGoogle Scholar
  25. 25.
    Wu J, Zhao H, Xiao D, Pham-Huy C, He J, He H. Mixed hemimicelles solid-phase extraction of cephalosporins in biological samples with ionic liquid-coated magnetic graphene oxide nanoparticles coupled with high-performance liquid chromatographic analysis. J Chromatogr A. 2016;1454:1–8.CrossRefGoogle Scholar
  26. 26.
    Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL. Magnetic ionic liquids in analytical chemistry: a review. Anal Chim Acta. 2016;934:9–21.CrossRefGoogle Scholar
  27. 27.
    Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, et al. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem. 2015;87:1552–9.CrossRefGoogle Scholar
  28. 28.
    An J, Rahn KL, Anderson JL. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta. 2017;167:268–78.CrossRefGoogle Scholar
  29. 29.
    Clark KD, Yamsek M, Nacham O, Anderson JL. Magnetic ionic liquids as PCR-compatible solvents for DNA extraction from biological samples. Chem Commun. 2015;51:16771–3.CrossRefGoogle Scholar
  30. 30.
    Pierson SA, Nacham O, Clark KD, Nan H, Mudryk Y, Anderson JL. Synthesis and characterization of low viscosity hexafluoroacetylactonate-based hydrophobic magnetic ionic liquids. New J Chem. 2017;41:5498–505.CrossRefGoogle Scholar
  31. 31.
    Clark KD, Varona M, Anderson JL. Ion-tagged oligonucleotides coupled with magnetic liquid support for the sequence-specific capture of DNA. Angew Chem Int Ed. 2017;56:7630–3.CrossRefGoogle Scholar
  32. 32.
    Chatzimitakos T, Binellas C, Maidatsi K, Stalikas C. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals. Anal Chim Acta. 2016;910:53–9.CrossRefGoogle Scholar
  33. 33.
    Armstrong DW, Zhang LK, He L, Gross ML. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2001;73:3679–86.CrossRefGoogle Scholar
  34. 34.
    Do TD CTJ, SJB D, Rubakhin SS, Sweedler JV. Single cell profiling using ionic liquid matrix-enhanced secondary ion mass spectrometry for neuronal cell type differentiation. Anal Chem. 2017;89:3078–86.CrossRefGoogle Scholar
  35. 35.
    Martinelango PK, Anderson JL, Dasgupta PK, Armstrong DW, Al-Horr RS, Slingsby RW. Gas-phase ion association provides increased selectivity and sensitivity for measuring perchlorate by mass spectrometry. Anal Chem. 2005;77:4829–35.CrossRefGoogle Scholar
  36. 36.
    Xu C, Pinto EC, Armstrong DW. Separation and sensitive determination of sphingolipids at low femtomole level by using HPLC-PIESI-MS/MS. Analyst. 2014;139:4169–75.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kevin D. Clark
    • 1
  • María J. Trujillo-Rodríguez
    • 1
  • Jared L. Anderson
    • 1
  1. 1.Department of ChemistryIowa State UniversityAmesUSA

Personalised recommendations