Skip to main content
Log in

Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phenolic resin based activated carbon fibers (ACFs) were applied for the first time as a reversed-dispersive solid-phase extraction (r-DSPE) sorbent. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied to determine 26 pesticides (organophosphates, organochlorines, synthetic pyrethroids, and herbicides) in different complex matrices, including cauliflower, cucumber, banana, apple, wheat, and black gram. Different physicochemical characterization techniques were used to investigate the engineering and structural properties of the r-DSPE sorbent. All the chromatographic analyses were performed with a gas chromatograph equipped with an electron capture detector. The recoveries of all 26 pesticides were acceptable (70–120%), with relative standard deviations of less than 15%. The limit of detection and the limit of quantification were 1.13–5.48 ng/g and 3.42–16.60 ng/g, respectively. In the original QuEChERS method, primary secondary amine is extensively used as the r-DSPE sorbent in the cleanup process, but it is eightfold more expensive than the ACFs used in this study. Therefore, the modified QuEChERS method using ACFs during the cleanup process is more efficient, cheaper, and more robust to determine pesticides from different types of matrices, including vegetables, grains, and fruits, and ACFs could be used as a cost-effective alternative to primary secondary amine.

Sample clean-up using PSA and ACF as r-DSPE sorbent in QuEChERS method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pareja L, Cesio V, Heinzen H, Fernández-Alba AR. Evaluation of various QuEChERS based methods for the analysis of herbicides and other commonly used pesticides in polished rice by LC–MS/MS. Talanta. 2011;83(5):1613–22. https://doi.org/10.1016/j.talanta.2010.11.052.

    Article  CAS  Google Scholar 

  2. Han Y, Song L, Zou N, Chen R, Qin Y, Pan C. Multi-residue determination of 171 pesticides in cowpea using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials. J Chromatogr B. 2016;1031:99–108. https://doi.org/10.1016/j.jchromb.2016.07.043.

    Article  CAS  Google Scholar 

  3. García-Reyes JF, Gilbert-López B, Molina-Díaz A, Fernández-Alba AR. Determination of pesticide residues in fruit-based soft drinks. Anal Chem. 2008;80(23):8966–74. https://doi.org/10.1021/ac8012708.

    Article  Google Scholar 

  4. Andrascikova M, Hrouzkova S. A comparative study of three modifications of the QuEChERS method for determination of endocrine disrupting pesticide residues in lemon matrices by fast GC-MS. Anal Methods. 2013;5(6):1374–84. https://doi.org/10.1039/C3AY26434C.

    Article  CAS  Google Scholar 

  5. Zhao P, Wang L, Zhou L, Zhang F, Kang S, Pan C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A. 2012;1225:17–25. https://doi.org/10.1016/j.chroma.2011.12.070.

    Article  CAS  Google Scholar 

  6. Whiteaker JR, Prather KA. Detection of pesticide residues on individual particles. Anal Chem. 2003;75(1):49–56. https://doi.org/10.1021/ac025771v.

    Article  CAS  Google Scholar 

  7. Srivastava A, Rai S, Kumar Sonker A, Karsauliya K, Pandey CP, Singh SP. Simultaneous determination of multiclass pesticide residues in human plasma using a mini QuEChERS method. Anal Bioanal Chem. 2017;409(15):3757–65. https://doi.org/10.1007/s00216-017-0317-7.

    Article  CAS  Google Scholar 

  8. Yang T, Zhang Z, Zhao B, Hou R, Kinchla A, Clark JM, et al. Real-time and in situ monitoring of pesticide penetration in edible leaves by surface-enhanced Raman scattering mapping. Anal Chem. 2016;88(10):5243–50. https://doi.org/10.1021/acs.analchem.6b00320.

    Article  CAS  Google Scholar 

  9. Al-Degs YS, Al-Ghouti MA, El-Sheikh AH. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J Hazard Mater. 2009;169(1–3):128–35. https://doi.org/10.1016/j.jhazmat.2009.03.065.

    Article  CAS  Google Scholar 

  10. Zhou Q, Xiao J, Wang W. Using multi-walled carbon nanotubes as solid phase extraction adsorbents to determine dichlorodiphenyltrichloroethane and its metabolites at trace level in water samples by high performance liquid chromatography with UV detection. J Chromatogr A. 2006;1125(2):152–8. https://doi.org/10.1016/j.chroma.2006.05.047.

    Article  CAS  Google Scholar 

  11. Song X-Y, Shi Y-P, Chen J. Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples. Food Chem. 2013;139(1–4):246–52. https://doi.org/10.1016/j.foodchem.2013.01.112.

    Article  CAS  Google Scholar 

  12. Hou X, Lei S, Qiu S, Guo L, Yi S, Liu W. A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent. Food Chem. 2014;153:121–9. https://doi.org/10.1016/j.foodchem.2013.12.031.

    Article  CAS  Google Scholar 

  13. Rodrigues FM, Mesquita PRR, de Oliveira LS, de Oliveira FS, Menezes Filho A, de P. Pereira PA, et al. Development of a headspace solid-phase microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. Microchem J. 2011;98(1):56–61. https://doi.org/10.1016/j.microc.2010.11.002.

    Article  CAS  Google Scholar 

  14. Rai S, Singh AK, Srivastava A, Yadav S, Siddiqui MH, Mudiam MKR. Comparative evaluation of QuEChERS method coupled to DLLME extraction for the analysis of multiresidue pesticides in vegetables and fruits by gas chromatography-mass spectrometry. Food Anal Methods. 2016;9(9):2656–69. https://doi.org/10.1007/s12161-016-0445-2.

    Article  Google Scholar 

  15. Zhao P, Wang L, Luo J, Li J, Pan C. Determination of pesticide residues in complex matrices using multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction sorbent. J Sep Sci. 2012;35(1):153–8. https://doi.org/10.1002/jssc.201100566.

    Article  CAS  Google Scholar 

  16. Anastassiades M, Maštovská K, Lehotay SJ. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A. 2003;1015(1–2):163–84. https://doi.org/10.1016/S0021-9673(03)01208-1.

    Article  CAS  Google Scholar 

  17. Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86(2):412–31.

    CAS  Google Scholar 

  18. Rajski Ł, Lozano A, Uclés A, Ferrer C, Fernández-Alba AR. Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2013;1304:109–20. https://doi.org/10.1016/j.chroma.2013.06.070.

    Article  CAS  Google Scholar 

  19. Han Y, Zou N, Song L, Li Y, Qin Y, Liu S, et al. Simultaneous determination of 70 pesticide residues in leek, leaf lettuce and garland chrysanthemum using modified QuEChERS method with multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction materials. J Chromatogr B. 2015;1005:56–64. https://doi.org/10.1016/j.jchromb.2015.10.002.

    Article  CAS  Google Scholar 

  20. Wu Y-L, Chen R-X, Zhu Y, Zhao J, Yang T. Simultaneous determination of sixteen amide fungicides in vegetables and fruits by dispersive solid phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2015;989:11–20. https://doi.org/10.1016/j.jchromb.2015.02.038.

    Article  CAS  Google Scholar 

  21. Singh S, Singh A, Bais VSS, Prakash B, Verma N. Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization. Mater Sci Eng C. 2014;38:46–54. https://doi.org/10.1016/j.msec.2014.01.042.

    Article  CAS  Google Scholar 

  22. Bikshapathi M, Mandal S, Mathur GN, Sharma A, Verma N. Modification of activated carbon fiber by metal dispersion and surface functionalization for the removal of 2-chloroethanol. Ind Eng Chem Res. 2011;50(23):13092–104.

    Article  CAS  Google Scholar 

  23. Bikshapathi M, Singh S, Bhaduri B, Mathur GN, Sharma A, Verma N. Fe-nanoparticles dispersed carbon micro and nanofibers: surfactant-mediated preparation and application to the removal of gaseous VOCs. Colloids Surf A. 2012;399:46–55. https://doi.org/10.1016/j.colsurfa.2012.02.023.

    Article  CAS  Google Scholar 

  24. Singh S, Verma N. Graphitic carbon micronanofibers asymmetrically dispersed with alumina-nickel nanoparticles: a novel electrode for mediatorless microbial fuel cells. Int J Hydrogen Energy. 2015;40(17):5928–38. https://doi.org/10.1016/j.ijhydene.2015.03.010.

    Article  CAS  Google Scholar 

  25. Prajapati YN, Bhaduri B, Joshi HC, Srivastava A, Verma N. Aqueous phase adsorption of different sized molecules on activated carbon fibers: effect of textural properties. Chemosphere. 2016;155:62–9. https://doi.org/10.1016/j.chemosphere.2016.04.040.

    Article  CAS  Google Scholar 

  26. ALOthman ZA. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012;5(12):2874–902. https://doi.org/10.3390/ma5122874.

    Article  CAS  Google Scholar 

  27. Sing KSW, Williams RT. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol. 2004;22(10):773–82.

    Article  CAS  Google Scholar 

  28. Haress NG, Govindarajan M, Al-Wabli RI, Almutairi MS, Al-Alshaikh MA, Al-Saadi AA, et al. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and theoretical calculations of (2E)-2-[3-(1H-imidazol-1-yl)-1-phenylpropylidene]hydrazinecarboxamide: an anticonvulsant agent. J Mol Struct. 2016;1118:219–32. https://doi.org/10.1016/j.molstruc.2016.04.026.

    Article  CAS  Google Scholar 

  29. Singh S, Ashfaq M, Singh RK, Joshi HC, Srivastava A, Sharma A, et al. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnol. 2013;30(6):656–65. https://doi.org/10.1016/j.nbt.2013.05.002.

    Article  CAS  Google Scholar 

  30. Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, et al. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 2010;1217(16):2548–60. https://doi.org/10.1016/j.chroma.2010.01.044.

    Article  CAS  Google Scholar 

  31. Koesukwiwat U, Lehotay SJ, Mastovska K, Dorweiler KJ, Leepipatpiboon N. Extension of the QuEChERS method for pesticide residues in cereals to flaxseeds, peanuts, and doughs. J Agric Food Chem. 2010;58(10):5950–8. https://doi.org/10.1021/jf902988b.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Department of Science and Technology (New Delhi, India) in the form of research grants (DST/INSPIRE/04/2015/001869 and GAP-306) for this research work. The authors are also obliged to CSIR-Indian Institute of Toxicology Research (CSIR-IITR) for providing necessary infrastructural facilities. The authors appreciatively acknowledge Gun Ei Chemical Industry Co. Ltd (Japan) for supplying the activated carbon fibers. The CSIR-IITR communication number for this article is 3459.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiv Singh or Sheelendra Pratap Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Srivastava, A. & Singh, S.P. Inexpensive, effective novel activated carbon fibers for sample cleanup: application to multipesticide residue analysis in food commodities using a QuEChERS method. Anal Bioanal Chem 410, 2241–2251 (2018). https://doi.org/10.1007/s00216-018-0894-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0894-0

Keywords

Navigation