Skip to main content
Log in

A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The development of simple methods with high sensitivity and selectivity to differentiate toxic aromatic thiols (thiophenols) from aliphatic thiols (cysteine, homocysteine, and glutathione) and hydrogen sulfide (H2S) is of great significance. Herein, we report on the fabrication of a novel near-infrared (NIR) fluorescent sensor for rapid and highly selective detection of thiophenols through the photoinduced electron transfer (PET) mechanism. In the presence of the thiophenols, an obvious enhancement of NIR fluorescence at 658 nm could be visualized with the aid of nucleophilic aromatic substitution (SNAr) reaction. The sensor displays large Stokes shift (~ 227 nm), fast response time (< 30 s), high sensitivity (~ 8.3 nM), and good biocompatibility. Moreover, the as-prepared sensor possesses an excellent anti-interference feature even when other possible interferents exist (aliphatic thiols and H2S) and has been successfully utilized for thiophenol detection in both water samples and living cells.

Illustration of the sensor for thiophenol imaging in living cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yin C, Huo F, Zhang J, Martinez-Manez R, Yang Y, Lv H, et al. Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev. 2013;42(14):6032–59.

    Article  CAS  Google Scholar 

  2. Rahman I, Macnee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches. Free Radic Biol Med. 2000;28(9):1405.

    Article  CAS  Google Scholar 

  3. Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73(24):5972–8.

    Article  CAS  Google Scholar 

  4. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998;49(1):31–62.

    Article  CAS  Google Scholar 

  5. Amrolia P, Sullivan SG, Stern A, Munday R. Toxicity of aromatic thiols in the human red blood cell. J Appl Toxicol. 1989;9(2):113–8.

    Article  CAS  Google Scholar 

  6. Hell T, Lindsay R. Toxicological properties of thio- and alkylphenols causing flavor tainting in fish from the upper Wisconsin River. J Environ Sci Health B. 1989;24(4):349–60.

    Article  Google Scholar 

  7. Munday R. Toxicity of aromatic disulphides. I. Generation of superoxide radical and hydrogen peroxide by aromatic disulphides in vitro. J Appl Toxicol. 1985;5(6):402–8.

    Article  CAS  Google Scholar 

  8. Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed. 2016;55(34):9993–6.

    Article  CAS  Google Scholar 

  9. Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew Chem Int Ed. 2015;54(47):13961–5.

    Article  CAS  Google Scholar 

  10. Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun. 2013;49(4):403–5.

    Article  CAS  Google Scholar 

  11. Zhang P, Li J, Li B, Xu J, Zeng F, Lv J, et al. A logic gate-based fluorescent sensor for detecting H2S and NO in aqueous media and inside live cells. Chem Commun. 2015;51(21):4414–6.

    Article  CAS  Google Scholar 

  12. Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2014;114(1):590–659.

    Article  CAS  Google Scholar 

  13. Yang Y, Zhao Q, Feng W, Li F. Luminescent chemodosimeters for bioimaging. Chem Rev. 2013;113(1):192–270.

    Article  CAS  Google Scholar 

  14. Gu K, Xu Y, Li H, Guo Z, Zhu S, Zhu S, et al. Real-time tracking and in vivo visualization of beta-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc. 2016;138(16):5334–40.

    Article  CAS  Google Scholar 

  15. Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, et al. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors Actuators B Chem. 2016;224:298–306.

    Article  CAS  Google Scholar 

  16. Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem. 2017;8(37):5795–802.

    Article  CAS  Google Scholar 

  17. Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, et al. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron. 2018;99:318–24.

    Article  CAS  Google Scholar 

  18. He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016;45(23):6449–61.

    Article  CAS  Google Scholar 

  19. Yu F, Han X, Chen L. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chem Commun. 2014;50(82):12234–49.

    Article  CAS  Google Scholar 

  20. Jiao X, Li Y, Niu J, Xie X, Wang X, Tang B. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems. Anal Chem. 2017; https://doi.org/10.1021/acs.analchem.7b04234.

  21. Ding D, Li K, Liu B, Tang BZ. Bioprobes based on AIE fluorogens. Accounts Chem Res. 2013;46(11):2441–53.

    Article  CAS  Google Scholar 

  22. Lou Z, Li P, Han K. Redox-responsive fluorescent probes with different design strategies. Accounts Chem Res. 2015;48(5):1358–68.

    Article  CAS  Google Scholar 

  23. Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, et al. Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2016;45(10):2976–3016.

    Article  CAS  Google Scholar 

  24. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.

    Article  CAS  Google Scholar 

  25. Zhang P, Nie X, Gao M, Zeng F, Qin A, Wu S, et al. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Mater Chem Front. 2017;1(5):838–45.

    Article  CAS  Google Scholar 

  26. Liu ZX, Wu ZL, Gao MX, Liu H, Huang CZ. Carbon dots with aggregation induced emission enhancement for visual permittivity detection. Chem Commun. 2016;52(10):2063–6.

    Article  CAS  Google Scholar 

  27. Jiang W, Fu Q, Fan H, Ho J, Wang W. A highly selective fluorescent probe for thiophenols. Angew Chem Int Ed. 2007;46(44):8445–8.

    Article  CAS  Google Scholar 

  28. Lin W, Long L, Tan W. A highly sensitive fluorescent probe for detection of benzenethiols in environmental samples and living cells. Chem Commun. 2010;46(9):1503–5.

    Article  CAS  Google Scholar 

  29. Sun Q, Yang SH, Wu L, Yang WC, Yang GF. A highly sensitive and selective fluorescent probe for thiophenol designed via a twist-blockage strategy. Anal Chem. 2016;88(4):2266–72.

    Article  CAS  Google Scholar 

  30. Zhang W, Huo F, Liu T, Wen Y, Yin C. A rapid and highly sensitive fluorescent imaging materials for thiophenols. Dyes Pigments. 2016;133:248–54.

    Article  CAS  Google Scholar 

  31. Liu XL, Duan XY, Du XJ, Song QH. Quinolinium-based fluorescent probes for the detection of thiophenols in environmental samples and living cells. Chem Asian J. 2012;7(11):2696–702.

    Article  CAS  Google Scholar 

  32. Pan Y, Ren TB, Cheng D, Zeng ZB, Yuan L, Zhang XB. A selective near-infrared fluorescent probe for in vivo imaging of thiophenols from a focused library. Chem Asian J. 2016;11(24):3575–82.

    Article  CAS  Google Scholar 

  33. Kand D, Mishra PK, Saha T, Lahiri M, Talukdar P. BODIPY based colorimetric fluorescent probe for selective thiophenol detection: theoretical and experimental studies. Analyst. 2012;137(17):3921–4.

    Article  CAS  Google Scholar 

  34. Liu HW, Zhang XB, Zhang J, Wang QQ, Hu XX, Wang P, et al. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues. Anal Chem. 2015;87(17):8896–903.

    Article  CAS  Google Scholar 

  35. Shao X, Kang R, Zhang Y, Huang Z, Peng F, Zhang J, et al. Highly selective and sensitive 1-amino BODIPY-based red fluorescent probe for thiophenols with high off-to-on contrast ratio. Anal Chem. 2015;87(1):399–405.

    Article  CAS  Google Scholar 

  36. Yu D, Huang F, Ding S, Feng G. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells. Anal Chem. 2014;86(17):8835–41.

    Article  CAS  Google Scholar 

  37. Jiang W, Cao Y, Liu Y, Wang W. Rational design of a highly selective and sensitive fluorescent PET probe for discrimination of thiophenols and aliphatic thiols. Chem Commun. 2010;46(11):1944–6.

    Article  CAS  Google Scholar 

  38. Wang Z, Han DM, Jia WP, Zhou QZ, Deng WP. Reaction-based fluorescent probe for selective discrimination of thiophenols over aliphaticthiols and its application in water samples. Anal Chem. 2012;84(11):4915–20.

    Article  CAS  Google Scholar 

  39. Liu X, Yang L, Gao L, Chen W, Qi F, Song X. A phthalimide-based fluorescent probe for thiophenol detection in water samples and living cells with a large Stokes shift. Tetrahedron. 2015;71(43):8285–9.

    Article  CAS  Google Scholar 

  40. Sun W, Guo S, Hu C, Fan J, Peng X. Recent development of chemosensors based on cyanine platforms. Chem Rev. 2016;116(14):7768–817.

    Article  CAS  Google Scholar 

  41. Yuan L, Lin W, Zheng K, He L, Huang W. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev. 2013;42(2):622–61.

    Article  CAS  Google Scholar 

  42. Guo Z, Park S, Yoon J, Shin I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev. 2014;43(1):16–29.

    Article  Google Scholar 

  43. Zhang P, Jiang XF, Nie X, Huang Y, Zeng F, Xia X, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking gamma-glutamyltranspeptidase (GGT) level in vivo. Biomaterials. 2016;80:46–56.

    Article  CAS  Google Scholar 

  44. Hu Q, Yu C, Xia X, Zeng F, Wu S. A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations. Biosens Bioelectron. 2016;81:341–8.

    Article  CAS  Google Scholar 

  45. William J, Kruper J, Thomas A, Chamberlin KM. Regiospecific aryl nitration of meso-substituted tetraarylporphyrins—a simple route to bifunctional porphyrins. J Org Chem. 1989;54:2753–6.

    Article  Google Scholar 

  46. Chen W, Zhu L, Hao Y, Yue X, Gai J, Xiao Q, et al. Detection of thiophenol in buffer, in serum, on filter paper strip, and in living cells using a red-emitting amino phenothiazine boranil based fluorescent probe with a large Stokes shift. Tetrahedron. 2017;73(31):4529–37.

    Article  CAS  Google Scholar 

  47. Chen W, Xu S, Day JJ, Wang D, Xian M. A general strategy for development of near-infrared fluorescent probes for bioimaging. Angew Chem Int Ed. 2017; https://doi.org/10.1002/anie.201710688.

  48. Ding Y, Zhu WH, Xie Y. Development of ion chemosensors based on porphyrin analogues. Chem Rev. 2017;117(4):2203–56.

    Article  CAS  Google Scholar 

  49. Cao X, Lin W, Yu Q. A ratiometric fluorescent probe for thiols based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold. J Org Chem. 2011;76(18):7423–30.

    Article  CAS  Google Scholar 

  50. Cheng F, Wu X, Liu M, Lon Y, Chen G, Zeng R. A porphyrin-based near-infrared fluorescent sensor for sulfur ion detection and its application in living cells. Sensors Actuators B Chem. 2016;228:673–8.

    Article  CAS  Google Scholar 

  51. Li CY, Zhang XB, Qiao L, Zhao Y, He CM, Huan SY, et al. Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg2+: well-resolved emission spectra and unique specificity. Anal Chem. 2009;81(24):9993–10001.

    Article  CAS  Google Scholar 

  52. Li Y, Wang H, Li J, Zheng J, Xu X, Yang R. Simultaneous intracellular beta-D-glucosidase and phosphodiesterase I activities measurements based on a triple-signaling fluorescent probe. Anal Chem. 2011;83(4):1268–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of the present work by NSFC (Project no. 21172065) and Hunan Provincial Natural Science Foundation of China (No. 2016JJ5005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongjin Zeng.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Electronic supplementary material

ESM 1

(PDF 700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Gao, Q., Cheng, F. et al. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells. Anal Bioanal Chem 410, 2001–2009 (2018). https://doi.org/10.1007/s00216-018-0867-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0867-3

Keywords

Navigation