Skip to main content
Log in

Trace analysis of pesticide residues in sediments using liquid chromatography–high-resolution Orbitrap mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The present study describes the optimization and validation of an analytical method based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and purification with dispersive solid-phase extraction (dSPE) before analysis, followed by ultrahigh-performance liquid chromatography–high-resolution linear ion trap/Orbitrap (LTQ Orbitrap) mass spectrometry for the determination of 18 pesticides in sediment. To optimize process efficiency, parameters such as pH, extraction salts, sediment amount, and cleanup sorbents were evaluated. Identification was based on both accurate mass and retention time, and further confirmation was achieved by mass spectrometry fragmentation. The optimized analytical method demonstrated good validation characteristics, such as accuracy (recoveries from 70.8% to 106.2%), method quantification limits (below 10 ng g-1 for 89% of the pesticides selected), linearity (coefficient of determination greater than 0.9921 in all cases), precision (repeatability and reproducibility with standard deviations below 18% and 21%, respectively), and matrix effect (signal suppression was exhibited for almost all analytes). The overall method performance, expressed as process efficiency, ranged from 58.8% to 102.1%. The validated method was successfully applied to real samples collected along two rivers in northwestern Greece, revealing the presence of three selected pesticides but at levels below the method quantification limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huen K, Bradman A, Harley K, Yousefi P, Boyd Barr D, Eskenazi B, et al. Organophosphate pesticide levels in blood and urine of women and newborns living in an agricultural community. Environ Res. 2012;117:8–16. https://doi.org/10.1016/j.envres.2012.05.005.

    Article  CAS  Google Scholar 

  2. Net S, Rabodonirina S, Dumoulin D, Chbib C, Tlili I, Ouddane B. Distribution of phthalates , pesticides and drug residues in the dissolved , particulate and sedimentary phases from transboundary rivers. Sci Total Environ. 2015;522:152–9. https://doi.org/10.1016/j.scitotenv.2015.03.087.

    Article  Google Scholar 

  3. Huerta B, Rodriguez-Mozaz S, Nannou C, Nakis L, Ruhí A, Acuna V, et al. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river. Sci Total Environ. 2015;540:241–9. https://doi.org/10.1016/j.scitotenv.2015.05.049.

    Article  Google Scholar 

  4. Li WC. Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil. Environ Pollut. 2014;187:193–201. https://doi.org/10.1016/j.envpol.2014.01.015.

    Article  CAS  Google Scholar 

  5. Stuart M, Lapworth D, Crane E, Hart A. Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ. 2012;416:1–21. https://doi.org/10.1016/j.scitotenv.2011.11.072.

    Article  CAS  Google Scholar 

  6. Köck-Schulmeyer M, Olmos M, López de Alda M, Barceló D. Development of a multiresidue method for analysis of pesticides in sediments based on isotope dilution and liquid chromatography-electrospray-tandem mass spectrometry. J Chromatogr A. 2013;1305:176–87. https://doi.org/10.1016/j.chroma.2013.07.036.

    Article  Google Scholar 

  7. Pinto MI, Burrows HD, Sontag G, Vale C, Noronha JP. Priority pesticides in sediments of European coastal lagoons: a review. Mar Pollut Bull. 2016;112:6–16. https://doi.org/10.1016/j.marpolbul.2016.06.101.

    Article  CAS  Google Scholar 

  8. Masiá A, Blasco C, Picó Y. Last trends in pesticide residue determination by liquid chromatography–mass spectrometry. Trends Environ Anal Chem. 2014;2:11–24. https://doi.org/10.1016/j.teac.2014.03.002.

    Article  Google Scholar 

  9. Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck F. Fast and easy multiresidue method employing acetonitrile. J AOAC Int. 2003;86:412–31.

    CAS  Google Scholar 

  10. Lehotay SJ, De Kok A, Hiemstra M, van Bodegraven P. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J AOAC Int. 2005;88:595–614.

    CAS  Google Scholar 

  11. Lam K-H, Wai H-Y, Leung KMY, Tsang VWH, Tang C-F, Cheung RYH, et al. A study of the partitioning behavior of Irgarol-1051 and its transformation products. Chemosphere. 2006;64:1177–84. https://doi.org/10.1016/j.chemosphere.2005.11.006.

    Article  CAS  Google Scholar 

  12. Baqar M, Sadef Y, Rashid S, Mahmood A, Li J, Zhang G. Organochlorine pesticides across the tributaries of River Ravi, Pakistan: human health risk assessment through dermal exposure, ecological risks, source fingerprints and spatio-temporal distribution. Sci Total Environ. 2018;618:291–305. https://doi.org/10.1016/j.scitotenv.2017.10.234.

    Article  CAS  Google Scholar 

  13. Mac Loughlin TM, Peluso L, Marino DJG. Pesticide impact study in the peri-urban horticultural area of Gran La Plata, Argentina. Sci Total Environ. 2017;598:572–80. https://doi.org/10.1016/j.scitotenv.2017.04.116.

    Article  CAS  Google Scholar 

  14. Rodríguez-González N, Uzal-Varela R, González-Castro MJ, Muniategui-Lorenzo S, Beceiro-González E. Reliable methods for determination of triazine herbicides and their degradation products in seawater and marine sediments using liquid chromatography-tandem mass spectrometry. Environ Sci Pollut Res. 2017;24:7764–75. https://doi.org/10.1007/s11356-017-8389-7.

    Article  Google Scholar 

  15. Zhang H, Bayen S, Kelly BC. Co-extraction and simultaneous determination of multi-class hydrophobic organic contaminants in marine sediments and biota using GC-EI-MS/MS and LC-ESI-MS/MS. Talanta. 2015;143:7–18. https://doi.org/10.1016/j.talanta.2015.04.084.

    Article  CAS  Google Scholar 

  16. Chen M, Yi Q, Hong J, Zhang L, Lin K, Yuan D. Simultaneous determination of 32 antibiotics and 12 pesticides in sediment using ultrasonic-assisted extraction and high performance liquid chromatography-tandem mass spectrometry. Anal Methods. 2015;7:1896–905. https://doi.org/10.1039/C4AY02895C.

    Article  CAS  Google Scholar 

  17. Kalogridi E-C, Christophoridis C, Bizani E, Drimaropoulou G, Fytianos K. Part II: temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: application of an optimized MAE-LC-MS/MS pretreatment and analytical method. Environ Sci Pollut Res. 2014;21:7252–62. https://doi.org/10.1007/s11356-014-2794-y.

    Article  CAS  Google Scholar 

  18. Farré M, Picó Y, Barceló D. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J Chromatogr A. 2014;1328:66–79. https://doi.org/10.1016/j.chroma.2013.12.082.

    Article  Google Scholar 

  19. Darwano H, Vo Duy S, Sauvé S. A new protocol for the analysis of pharmaceuticals, pesticides, and hormones in sediments and suspended particulate matter from rivers and municipal wastewaters. Arch Environ Contam Toxicol. 2014;66:582–93. https://doi.org/10.1007/s00244-014-0007-9.

    Article  CAS  Google Scholar 

  20. Chiaia-Hernandez AC, Krauss M, Hollender J. Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environ Sci Technol. 2013;47:976–86. https://doi.org/10.1021/es303888v.

    Article  CAS  Google Scholar 

  21. Hellar-Kihampa H, De Wael K, Lugwisha E, Malarvannan G, Covaci A, Van Grieken R. Spatial monitoring of organohalogen compounds in surface water and sediments of a rural-urban river basin in Tanzania. Sci Total Environ. 2013;447:186–97. https://doi.org/10.1016/j.scitotenv.2012.12.083.

    Article  CAS  Google Scholar 

  22. Masiá A, Campo J, Vázquez-Roig P, Blasco C, Picó Y. Screening of currently used pesticides in water, sediments and biota of the Guadalquivir River Basin (Spain). J Hazard Mater. 2013;263:98–104. https://doi.org/10.1016/j.jhazmat.2013.09.035.

    Article  Google Scholar 

  23. Del Mar Gómez-Ramos M, Rajski Ł, Heinzen H, Fernández-Alba AR. Liquid chromatography Orbitrap mass spectrometry with simultaneous full scan and tandem MS/MS for highly selective pesticide residue analysis. Anal Bioanal Chem. 2015;407:6317–26. https://doi.org/10.1007/s00216-015-8709-z.

    Article  Google Scholar 

  24. Hu Q, Noll RJ, Li H, Makarov A, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43. https://doi.org/10.1002/jms.856.

    Article  CAS  Google Scholar 

  25. Makarov A, Denisov E, Kholomeev A, Baischun W, Lange O, Strupat K, et al. Performance evaluation of a hybrid linear ion trap/Orbitrap mass spectrometer. Anal Chem. 2006;78:2113.

    Article  CAS  Google Scholar 

  26. European Parliament and Council. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J EurCommunities. 2000;327:1–72.

  27. European Commission. Commission Implementing Regulation (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off J Eur Union L. 2015;78:40–2.

    Google Scholar 

  28. European Commission. Commission Directive 2009/90/EC of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, technical specifications for chemical analysis and monitoring of water status. Off J Eur Union L. 2009;201:36–8.

    Google Scholar 

  29. Bermúdez-Couso A, Arias-Estévez M, Nóvoa-Muñoz JC, López-Periago E, Soto-González B, Simal-Gándara J. Seasonal distributions of fungicides in soils and sediments of a small river basin partially devoted to vineyards. Water Res. 2007;41:4515–25. https://doi.org/10.1016/j.watres.2007.06.029.

    Article  Google Scholar 

  30. Mastovska K, Lehotay S. Rapid sample preparation method for LC−MS MS or GC−MS analysis of acrylamides in various food matrices. J Agric Food Chem. 2006;54:7001–8. https://doi.org/10.1021/jf061330r.

    Article  CAS  Google Scholar 

  31. De Oliveira Arias JL, Rombaldi C, Caldas SS, Primel EG. Alternative sorbents for the dispersive solid-phase extraction step in quick, easy, cheap, effective, rugged and safe method for extraction of pesticides from rice paddy soils with determination by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2014;1360:66–75. https://doi.org/10.1016/j.chroma.2014.07.082.

    Article  Google Scholar 

  32. Lozowicka B, Rutkowska E, Jankowska M. Influence of QuEChERS modifications on recovery and matrix effect during the multi-residue pesticide analysis in soil by GC/MS/MS and GC/ECD/NPD. Environ Sci Pollut Res. 2017;24:7124–38. https://doi.org/10.1007/s11356-016-8334-1.

    Article  CAS  Google Scholar 

  33. De Carlo RM, Rivoira L, Ciofi L, Ancillotti C, Checchini L, Del Bubba M, et al. Evaluation of different QuEChERS procedures for the recovery of selected drugs and herbicides from soil using LC coupled with UV and pulsed amperometry for their detection. Anal Bioanal Chem. 2015;407:1217–29. https://doi.org/10.1007/s00216-014-8339-x.

    Article  Google Scholar 

  34. Berlioz-Barbier A, Vauchez A, Wiest L, Baudot R, Vulliet E, Cren-Olivé C. Multi-residue analysis of emerging pollutants in sediment using QuEChERS-based extraction followed by LC-MS/MS analysis. Anal Bioanal Chem. 2014;406:1259–66. https://doi.org/10.1007/s00216-013-7450-8.

    Article  CAS  Google Scholar 

  35. Lehotay SJ. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. J AOAC Int. 2017;90:485–520.

    Google Scholar 

  36. EU Reference Laboratories for Residues of Pesticides. Analysis of acidic pesticides using QuEChERS (EN15662) and acidified QuEChERS method. Fellbach: EU Reference Laboratory for Pesticides Requiring Single Residue Methods CVUA Stuttgart; 2015.

    Google Scholar 

  37. Santos LHMLM, Ramalhosa MJ, Ferreira M, Delerue-Matos C. Development of a modified acetonitrile-based extraction procedure followed by ultra-high performance liquid chromatography-tandem mass spectrometry for the analysis of psychiatric drugs in sediments. J Chromatogr A. 2016;1437:37–48. https://doi.org/10.1016/j.chroma.2016.01.079.

    Article  CAS  Google Scholar 

  38. Salvia MV, Vulliet E, Wiest L, Baudot R, Cren-Olivé C. Development of a multi-residue method using acetonitrile-based extraction followed by liquid chromatography-tandem mass spectrometry for the analysis of steroids and veterinary and human drugs at trace levels in soil. J Chromatogr A. 2012;1245:122–33. https://doi.org/10.1016/j.chroma.2012.05.034.

    Article  CAS  Google Scholar 

  39. Bragança I, Plácido A, Paíga P, Domingues VF, Delerue-Matos C. QuEChERS: A new sample preparation approach for the determination of ibuprofen and its metabolites in soils. Sci Total Environ. 2012;433:281–9. https://doi.org/10.1016/j.scitotenv.2012.06.035.

    Article  Google Scholar 

  40. Peysson W, Vulliet E. Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A. 2013;1290:46–61. https://doi.org/10.1016/j.chroma.2013.03.057.

    Article  CAS  Google Scholar 

  41. Plossl F, Giera M, Bracher F. Multiresidue analytical method using dispersive solid-phase extraction and gas chromatography/ion trap mass spectrometry to determine pharmaceuticals in whole blood. J Chromatogr A. 2006;1135:19–26. https://doi.org/10.1016/j.chroma.2006.09.033.

    Article  Google Scholar 

  42. Rizzetti TM, Kemmerich M, Martins ML, Prestes OD, Adaime MB, Zanella R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC MS/MS. Food Chem. 2016;196:25–33. https://doi.org/10.1016/j.foodchem.2015.09.010.

    Article  CAS  Google Scholar 

  43. European Commission. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571/2013. 2013.

  44. ​European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Communities. 2002;221:8–36.

  45. Padilla-Sánchez JA, Plaza-Bolaños P, Romero-González R, Grande-Martínez Á, Thurman EM, Garrido-Frenich A. Innovative determination of polar organophosphonate pesticides based on high-resolution Orbitrap mass spectrometry. J Mass Spectrom. 2012;47:1458–65. https://doi.org/10.1002/jms.3107.

    Article  Google Scholar 

  46. Bass JK, Ortega L, Rosales C, Petersen NJ, Philen RM. What’s being used at home: a household pesticide survey. Rev Panam Salud Publica. 2001;9:138–44.

    Article  CAS  Google Scholar 

  47. Etchegoyen M, Ronco A, Almada P, Abelando M, Marino D. Occurrence and fate of pesticides in the Argentine stretch of the Paraguay-Parana basin. Environ Monit Assess. 2017;189:63. https://doi.org/10.1007/s10661-017-5773-1.

    Article  CAS  Google Scholar 

  48. Moreno-Gonzalez R, Leon VM. Presence and distribution of current-use pesticides in surface marine sediments from a Mediterranean coastal lagoon (SE Spain). Environ Sci Pollut Res. 2017;24:8033–48. https://doi.org/10.1007/s11356-017-8456-0.

    Article  CAS  Google Scholar 

  49. Moeder M, Carranza-Diaz O, López-Angulo G, Vega-Aviña R, Chávez-Durán FA, Jomaa S, et al. Potential of vegetated ditches to manage organic pollutants derived from agricultural runoff and domestic sewage: a case study in Sinaloa (Mexico). Sci Total Environ. 2017;598:1106–15. https://doi.org/10.1016/j.scitotenv.2017.04.149.

    Article  CAS  Google Scholar 

  50. Zheng SQ, Cooper J-F. Adsorption, desorption, and degradation of three pesticides in different soils. Arch Environ Contam Toxicol. 1996;30:15–20.

    Article  CAS  Google Scholar 

  51. Dec J, Bollag JM. Determination of covalent and noncovalent binding interactions between xenobiotic chemicals and soil. Soil Sci. 1997;162:858–74.

    Article  CAS  Google Scholar 

  52. Youbin S, Kazuhiro T, Akio I, Dongmei Z. Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils. Pest Manag Sci. 2009;65:956–62. https://doi.org/10.1002/ps.1779.

    Article  Google Scholar 

  53. Allinson G, Zhang P, Bui AD, Allinson M, Rose G, Marshall S, et al. Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ Sci Pollut Res. 2015;22:10214–26. https://doi.org/10.1007/s11356-015-4206-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was cofinanced by the European Union (European Social Fund) and Greek national funds through the operational program “Education and Lifelong Learning” of the National Strategic Reference Framework—Research Funding Program: ARCHIMEDES III, investing in knowledge society through the European Social Fund. It was also financially supported by the European project “Real time monitoring of SEA contaminants by an autonomous lab-on-a-chip biosensor” (SEA-on-a-CHIP; project ID 614168). The authors would like to thank the Unit of Environmental, Organic and Biochemical High Resolution Analysis-Orbitrap-LC-MS of the University of Ioannina for providing access to the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki I. Boti.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nannou, C.I., Boti, V.I. & Albanis, T.A. Trace analysis of pesticide residues in sediments using liquid chromatography–high-resolution Orbitrap mass spectrometry. Anal Bioanal Chem 410, 1977–1989 (2018). https://doi.org/10.1007/s00216-018-0864-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0864-6

Keywords

Navigation