Detection of 1,3-dihydroxyacetone by tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence

Research Paper
  • 9 Downloads

Abstract

1,3-Dihydroxyacetone, a common cosmetic material and food additive, has been successfully explored as an efficient electrochemiluminescence coreactant of Ru(bpy)32+ for the first time. It is about 25 times more effective than the well-known coreactant sodium oxalate. The high electrochemiluminescence efficiency allows sensitive detection of 1,3-dihydroxyacetone without any derivatization. The electrochemiluminescence method shows two linear electrochemiluminescence responses over the range of 5.0–500 μM and 500 μM–6.0 mM with a detection limit of 1.79 μM. The proposed method is at least two orders of magnitude more sensitive than other reported methods.

Graphical abstract

ECL intensity-potential profile of 1,3-dihydroxyacetone (DHA) and oxalate

Keywords

Coreactant Electrochemiluminescence 1,3-Dihydroxyacetone Tris(2,2′-bipyridine)ruthenium(II) 

Notes

Acknowledgments

This work was kindly supported by the Jilin Provincial Science Research Foundation of China [Grant Number 20170520146JH], the Ministry of Science and technology of the People’s Republic of China [Grant Number 2016YFA0201300], the National Natural Science Foundation of China [Grant Numbers 21505128, 21475123], and the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu ZY, Qi WJ, Xu GB. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44(10):3117–42.CrossRefGoogle Scholar
  2. 2.
    Bae SW, Oh JW, Shin IS, Cho MS, Kim YR, Kim H, et al. Highly sensitive detection of DNA by electrogenerated chemiluminescence amplification using dendritic Ru(bpy)3 2+-doped silica nanoparticles. Analyst. 2010;135(3):603–7.CrossRefGoogle Scholar
  3. 3.
    Kim BH, Lee DN, Park HJ, Min JH, Jun YM, Park SJ, et al. Synthesis and characterization of electrochemiluminescent ruthenium(II) complexes containing o-phenanthroline and various alpha-diimine ligands. Talanta. 2004;62(3):595–602.CrossRefGoogle Scholar
  4. 4.
    Kurita R, Arai K, Nakamoto K, Kato D, Niwa O. Development of electrogenerated chemiluminescence-based enzyme linked immunosorbent assay for sub-pM detection. Anal Chem. 2010;82(5):1692–7.CrossRefGoogle Scholar
  5. 5.
    Lin ZJ, Chen XM, Jia TT, Wang XD, Xie ZX, Oyama CXM. Fabrication of a colorimetric electrochemiluminescence sensor. Anal Chem. 2009;81(2):830–3.CrossRefGoogle Scholar
  6. 6.
    Qi HL, Wang C, Zou R, Li LB. Electrogenerated chemiluminescence sensor for the determination of propranolol hydrochloride. Anal Methods. 2011;3(2):446–51.CrossRefGoogle Scholar
  7. 7.
    Ge L, Su M, Gao CM, Tao XT, Ge SG. Application of Au cage/Ru(bpy)3 2+ nanostructures for the electrochemiluminescence detection of K562 cancer cells based on aptamer. Sensors Actuators B Chem. 2015;214:144–51.CrossRefGoogle Scholar
  8. 8.
    Afsharan H, Navaeipour F, Khalilzadeh B, Tajalli H, Mollabashi M, Ahar MJ, et al. Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru-silica nanoporous@gold nanocomposite. Biosens Bioelectron. 2016;80:146–53.CrossRefGoogle Scholar
  9. 9.
    Zhang HR, Wang YZ, Zhao W, Xu JJ, Chen HY. Visual color-switch electrochemiluminescence biosensing of cancer cell based on multichannel bipolar electrode chip. Anal Chem. 2016;88(5):2884–90.CrossRefGoogle Scholar
  10. 10.
    Qi WJ, Gabr M, Liu ZY, Hu LZ, Han MY, Zhu SY, et al. Tris(2,2′-bipyridyl) ruthenium(II) electrochemiluminescence of glyoxal, glyoxylic acid, methylglyoxal, and acetaldehyde. Electrochim Acta. 2013;89:139–43.CrossRefGoogle Scholar
  11. 11.
    Crespo GA, Mistlberger G, Bakker E. Electrogenerated chemiluminescence for potentiometric sensors. J Am Chem Soc. 2012;134(1):205–7.CrossRefGoogle Scholar
  12. 12.
    Zheng LY, Wang BB, Chi YW, Song SH, Fan CH, Chen GN. Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2-bipyridyl) ruthenium(II). Dalton Trans. 2012;41(5):1630–134.CrossRefGoogle Scholar
  13. 13.
    Kurita R, Niwa O. DNA methylation analysis triggered by bulge specific immuno-recognition. Anal Chem. 2012;84(17):7533–8.CrossRefGoogle Scholar
  14. 14.
    Dong YP, Zhou Y, Wang J, Zhu JJ. Electrogenerated chemiluminescence resonance energy transfer between Ru(bpy)3 2+ electrogenerated chemiluminescence and gold nanoparticles/graphene oxide nanocomposites with graphene oxide as coreactant and its sensing application. Anal Chem. 2016;88(10):5469–75.CrossRefGoogle Scholar
  15. 15.
    Liu XQ, Shi LH, Niu WX, Li HJ, Xu GB. Environmentally friendly and highly sensitive ruthenium(II) tris(2,2′-bipyridyl) electrochemiluminescent system using 2-(dibutylamino) ethanol as co-reactant. Angew Chem Int Ed. 2007;46(3):421–4.CrossRefGoogle Scholar
  16. 16.
    Liu XQ, Shi LH, Li HJ, Niu WX, Xu GB. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescent detection of coreactants containing aromatic diol group by the interaction between diol and borate anion. Electrochem Commun. 2007;9(11):2666–70.CrossRefGoogle Scholar
  17. 17.
    Witt MD, Roughton S, Isakson TJ, Richter MM. Enhanced electrogenerated chemiluminescence of Ru(bpy)3 2+/TPrA (bpy=2,2′-bipyridine; TPrA=tri-n-propylamine) via oxygen quenching using melatonin. J Lumin. 2016;171:118–23.CrossRefGoogle Scholar
  18. 18.
    Yuan YL, Li HJ, Han S, Hu LZ, Parveen S, Xu GB. Vitamin C derivatives as new coreactants for tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Anal Chim Acta. 2011;701(2):169–73.CrossRefGoogle Scholar
  19. 19.
    Wang LL, Qian J, Hu ZC, Zheng YG, Hu W. Determination of dihydroxyacetone and glycerol in fermentation broth by pyrolytic methylation/gas chromatography. Anal Chim Acta. 2006;557(1–2):262–6.Google Scholar
  20. 20.
    Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Lett. 2006;47(39):6993–5.CrossRefGoogle Scholar
  21. 21.
    Nguyen BC, Kochevar IE. Factors influencing sunless tanning with dihydroxyacetone. Br J Dermatol. 2003;149(2):332–40.CrossRefGoogle Scholar
  22. 22.
    Hu ZC, Tian SY, Ruan LJ, Zheng YG. Repeated biotransformation of glycerol to 1,3-dihydroxyacetone by immobilized cells of gluconobacteroxydans with glycerol- and urea-feeding strategy in a bubble column bioreactor. Bioresour Technol. 2017;233:144–9.CrossRefGoogle Scholar
  23. 23.
    Dikshit PK, Moholkar VS. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacteroxydans MTCC 904. Bioresour Technol. 2016;216:1058–65.CrossRefGoogle Scholar
  24. 24.
    Liu YP, Sun Y, Tan C, Li H, Zheng XJ, Jin KQ, et al. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacterfrateurii. Bioresour Technol. 2013;142:384–9.CrossRefGoogle Scholar
  25. 25.
    Zhou X, Xu Y, Yu SY. Simultaneous bioconversion of xylose and glycerol to xylonic acid and 1,3-dihydroxyacetone from the mixture of pre-hydrolysates and ethanol-fermented waste liquid by gluconobacteroxydans. Appl Biochem Biotech. 2016;178(1):1–8.CrossRefGoogle Scholar
  26. 26.
    Navratil M, Tkac J, Svitel J, Danielsson B, Sturdik E. Monitoring of the bioconversion of glycerol to dihydroxyacetone with immobilized gluconobacteroxydans cell using thermometric flow injection analysis. Process Biochem. 2001;36(11):1045–52.CrossRefGoogle Scholar
  27. 27.
    Grey C, Viloria-Cols M, Jungvid H, Adlercreutz P. Process development of oxygen-demanding reactions utilizing a simple design with parallel glass tube reactors—evaluated using gluconobacteroxydans (DSM 24525). Biocatal Biotransfor. 2012;30(5–6):441–5.CrossRefGoogle Scholar
  28. 28.
    Liu YP, Li H, Sun Y, Zhou ZS. Determination of 1,3-dihydroxyacetone in fermentation broth by spectrophotometry. Chin J Pharm. 2011;42(11):834–7.Google Scholar
  29. 29.
    Xie J, Chen C, Zhou YQ, Fei JJ, Ding YL, Zhao J. A galactose oxidase biosensor based on graphene composite film for the determination of galactose and dihydroxyacetone. Electroanalysis. 2016;28(1):183–8.CrossRefGoogle Scholar
  30. 30.
    Li L, Cao J, Zhang QS. Determination of dihydroxyacetone content in cosmetics by high performance liquid chromatography. China Surfactant Detergent Cosmetics. 2015;45(6):354–6.Google Scholar
  31. 31.
    Chen J, Chen JH, Zhou CL. HPLC methods for determination of dihydroxyacetone and glycerol in fermentation broth and comparison with a visible spectrophotometric method to determine dihydroxyacetone. J Chromatogr Sci. 2008;46(10):912–6.CrossRefGoogle Scholar
  32. 32.
    Pappalardo M, Pappalardo L, Brooks P. Rapid and reliable HPLC method for the simultaneous determination of dihydroxyacetone, methylglyoxal and 5-hydroxymethylfurfural in leptospermum honeys. PLoS One. 2016;11(11):1–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Life ScienceChangchun University of TechnologyChangchunPeople’s Republic of China
  2. 2.State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
  3. 3.University of Chinese Academy of SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations