Abstract
Size control of nanoparticles in nanotechnology-based drug products is crucial for their successful development, since the in vivo pharmacokinetics of nanoparticles are size-dependent. In this study, we evaluated the use of atomic force microscopy (AFM) for imaging and size measurement of nanoparticles in aqueous medium. The height sizes of rigid polystyrene nanoparticles and soft liposomes were measured by AFM and were compared with the hydrodynamic sizes measured by dynamic light scattering (DLS). The lipid compositions of the studied liposomes were similar to those of commercial products. AFM proved to be a viable method for obtaining images of both polystyrene nanoparticles and liposomes in aqueous medium. For the polystyrene nanoparticles, the average height size observed by AFM was similar to the average number-weighted diameter obtained by DLS, indicating the usefulness of AFM for measuring the sizes of nanoparticles in aqueous medium. For the liposomes, the height sizes obtained by AFM differed depending upon the procedures of immobilizing the liposomes onto a solid substrate. In addition, the resultant average height sizes of the liposomes were smaller than those obtained by DLS. This knowledge will help the correct use of AFM as a powerful tool for imaging and size measurement of nanotechnology-based drug products for clinical use.
This is a preview of subscription content, access via your institution.




References
Ehmann F, Sakai-Kato K, Duncan R, Hernán Pérez dela Ossa D, Pita R, et al. Next-generation nanomedicines and nanosimilars: EU regulators’ initiatives relating to the development and evaluation of nanomedicines. Nanomedicine (Lond). 2013;8:849–56.
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.
Goodman TT, Olive PL, Pun SH. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int J Nanomedicine. 2007;2:265–74.
Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.
Baalousha M, Lead JR. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure. Environ Sci Technol. 2012;46:6134–42.
Kestens V, Roebben G, Herrmann J, Jämting Å, Coleman V, Minelli C, et al. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material. J Nanopart Res. 2016;18:171. https://doi.org/10.1007/s11051-016-3474-2.
Bootz A, Vogel V, Schubert D, Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57:369–75.
Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, et al. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv Powder Technol. 2011;22:766–70.
Boyd RD, Pichaimuthu SK, Cuenat A. New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf A Physicochem Eng Asp. 2011;387:35–42.
Kato H, Nakamura A, Takahashi K, Kinugasa S. Accurate size and size-distribution determination of polystyrene latex nanoparticles in aqueous medium using dynamic light scattering and asymmetrical flow field flow fractionation with multi-angle light scattering. Nanomaterilas. 2012;2:15–30.
Hoo CM, Starostin N, West P, Mecartney ML. A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res. 2008;10:89–96.
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69:1–9.
Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40:4087–91.
Patty PJ, Frisken BJ. Direct determination of the number-weighted mean radius and polydispersity from dynamic light-scattering data. Appl Opt. 2006;45:2209–16.
Zhang J, Li Y, An FF, Zhang X, Chen X, Lee CS. Preparation and size control of sub-100 nm pure nanodrugs. Nano Lett. 2015;15:313–8.
Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm. 2011;417:120–37.
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Anal Chem. 2016;80:96–111.
Dagata JA, Farkas N, Kavuri P, Vladar AE, Wu CL, Itoh H, Ehara K. Method for measuring the diameter of polystyrene latex reference spheres by atomic force microscopy. Natl Inst Stand Technol Spec Publ SP 260–185. 2016. https://doi.org/10.6028/NIST.SP.260-185
Muraji Y, Fujita T, Itoh H, Fujita D. Preparation procedure of liposome-absorbed substrate and tip shape correction of diameters of liposome measured by AFM. Microsc Res. 2013;1:24–8.
Takechi-Haraya Y, Sakai-Kato K, Abe Y, Kawanishi T, Okuda H, Goda Y. Observation of liposomes of differing lipid composition in aqueous medium by means of atomic force microscopy. Microscopy. 2016;65:383–9.
Takechi-Haraya Y, Sakai-Kato K, Abe Y, Kawanishi T, Okuda H, Goda Y. Atomic force microscopic analysis of the effect of lipid composition on liposome membrane rigidity. Langmuir. 2016;32:6074–82.
Szebeni J, Bedőcs P, Rozsnyay Z, Weiszhár Z, Urbanics R, Rosivall L, et al. Liposome-induced complement activation and related cardiopulmonary distress in pigs: factors promoting reactogenicity of Doxil and AmBisome. Nanomed Nanotechnol Biol Med. 2012;8:176–84.
Pignataro B, Steinem C, Galla HJ, Fuchs H, Janshoff A. Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys J. 2000;78:487–98.
Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum. 1993;64:1868–73.
Sader JE, Chon JWM, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum. 1999;70:3967–9.
Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Centr Eur J Phys. 2012;10:181–8.
Smolyakov G, Formosa-Dague C, Severac C, Duval RE, Dague E. High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments. Micron. 2016;85:8–14.
Djokovic V, Nedeljkovic JM. Stress relaxation in hematite nanoparticles-polystyrene composites. Macromol Rapid Commun. 2000;21:994–7.
Szoka F Jr, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng. 1980;9:467–508.
Yan X, Scherphof GL, Kamps JA. Liposome opsonization. J Liposome Res. 2005;15:109–39.
Acknowledgments
This work was supported in part by the Research on Development of New Drugs and Research on Regulatory Harmonization and Evaluation of Pharmaceuticals, Medical Devices, Regenerative and Cellular Therapy Products, Gene Therapy Products, and Cosmetics from the Japan Agency for Medical Research and Development, AMED.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Takechi-Haraya, Y., Goda, Y. & Sakai-Kato, K. Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy. Anal Bioanal Chem 410, 1525–1531 (2018). https://doi.org/10.1007/s00216-017-0799-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-017-0799-3
Keywords
- Atomic force microscopy
- Dynamic light scattering
- Size measurement
- Polystyrene nanoparticle
- Liposome