Skip to main content
Log in

An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An aptamer-based biosensor was developed for the detection of doxorubicin using electrochemical impedance spectroscopy. Doxorubicin and its 14-dehydroxylated version daunorubicin are anthracyclines often used in cancer treatment. Due to their mutagenic and cardiotoxic effects, detection in groundwater is desirable. We developed a biosensor using the daunorubicin-binding aptamer as biological recognition element. The aptamer was successfully co-immobilized with mercaptohexanol on gold and a density of 1.3*1013 ± 2.4*1012 aptamer molecules per cm2 was achieved. The binding of doxorubicin to the immobilized aptamer was detected by electrochemical impedance spectroscopy. The principle is based on the inhibition of electron transfer between electrode and ferro-/ferricyanide in solution caused by the binding of doxorubicin to the immobilized aptamer. A linear relationship between the charge transfer resistance (R ct ) and the doxorubicin concentration was obtained over the range of 31 nM to 125 nM doxorubicin, with an apparent binding constant of 64 nM and a detection limit of 28 nM. With the advantages of high sensitivity, selectivity, and simple sensor construction, this method shows a high potential of impedimetric aptasensors in environmental monitoring.

Measurement chamber and immobilization principle for the detection of doxorubicin by electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rahman A, Goodman A, Foo W, Harvey J, Smith FP, Schein PS. Clinical pharmacology of daunorubicin in Phase I patients with solid tumors: development of an analytical methodology for daunorubicin and its metabolites. Semin Oncol. 1984;11(4):36–44.

    CAS  Google Scholar 

  2. de los Santos-Alvarez N, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2008) Aptamers as recognition elements for label-free analytical devices. TrAC Trends Anal Chem 27(5):437-446

  3. Hanna AD, Lam A, Tham S, Dulhunty AF, Beard NA. Adverse effects of doxorubicin and its metabolic product on cardiac RyR2 and SERCA2A. Mol Pharmacol. 2014;86(4):438–49.

    Article  Google Scholar 

  4. Mahnik SN, Lenz K, Weissenbacher N, Mader RM, Fuerhacker M. Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system. Chemosphere. 2007;66, 30(1):–37.

  5. Chisvert A, Sisternes J, Balaguer Á, Salvador A. A gas chromatography–mass spectrometric method to determine skin-whitening agents in cosmetic products. Talanta. 2010;81(1):530–6.

    Article  CAS  Google Scholar 

  6. Diallo S, Lecanu L, Greeson J, Papadopoulos V. A capillary gas chromatography/mass spectrometric method for the quantification of hydroxysteroids in human plasma. Analytical Biochemistry. 2004;324(1):123–30.

    Article  CAS  Google Scholar 

  7. Kaushik D, Bansal G. Characterization of degradation products of idarubicin through LC-UV, MSn, and LC-MS-TOF studies. J Pharmaceut Biomedi Anal. 2013;85:123–31.

    Article  CAS  Google Scholar 

  8. Fogli S, Danesi R, Innocenti F, Di Paolo A, Bocci G, Barbara C, Del Tacca M. An improved HPLC method for therapeutic drug monitoring of daunorubicin, idarubicin, doxorubicin, epirubicin, and their 13-dihydro metabolites in human plasma. Ther Drug Monit. 1999;21(3):367–75.

  9. Chin DL, Lum BL, Sikic BI. Rapid determination of PEGylated liposomal doxorubicin and its major metabolite in human plasma by ultraviolet-visible high-performance liquid chromatography. J Chromatogr B Anal Technol Biomedi Life Sci. 2002;779(2):259–69.

    Article  CAS  Google Scholar 

  10. Hassan HNA, Barsoum BN, Habib IHI. Simultaneous spectrophotometric determination of rutin, quercetin, and ascorbic acid in drugs using a Kalman filter approach. J Pharmaceut Biomed Anal. 1999;20(1):315–20.

    Article  CAS  Google Scholar 

  11. Zhang F, Du Y, Ye B, Li P. Study on the interaction between the chiral drug of propranolol and α1-acid glycoprotein by fluorescence spectrophotometry. J Photochem Photobiol B Biology. 2007;86(3):246–51.

    Article  CAS  Google Scholar 

  12. Sun S, Huang X, Ma M, Qiu N, Cai Z, Luo Z, Alies NP. Systematic evaluation of avidin–biotin interaction by fluorescence spectrophotometry. Spectrochim Acta Part A Mol Biomol Spectrosc. 2012;89:99–104.

  13. Yang X, Gao H, Qian F, Zhao C, Liao X. Internal standard method for the measurement of doxorubicin and daunorubicin by capillary electrophoresis with in-column double optical-fiber LED-induced fluorescence detection. J Parmaceut Biomed Anal. 2016;117:118–24.

    Article  CAS  Google Scholar 

  14. Simeon N, Chatelut E, Canal P, Nertz M, Couderc F. Anthracycline analysis by capillary electrophoresis. Application to the analysis of daunorubicine in Kaposi sarcoma tumor. J Chromatogr A. 1999;853(1/2):449–54.

    Article  CAS  Google Scholar 

  15. Erdem A, Karadeniz H, Caliskan A. Dendrimer modified graphite sensors for detection of anticancer drug daunorubicin by voltammetry and electrochemical impedance spectroscopy. Analyst. 2011;136(5):1041–5.

    Article  CAS  Google Scholar 

  16. Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R. Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal Rev. 2012;4(1):1–30.

    Article  Google Scholar 

  17. Velasco-Garcia MN, Missailidis S. New trends in aptamer-based electrochemical biosensors. Gene Ther Mol Biol. 2009;13(A):1–9.

    CAS  Google Scholar 

  18. Mann D, Reinemann C, Stoltenburg R, Strehlitz B. In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun. 2005;338(4):1928–34.

    Article  CAS  Google Scholar 

  19. Liang G, Man Y, Jin X, Pan L, Liu X. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta. 2016;36:222–8.

    Article  Google Scholar 

  20. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW. An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc. 2006;128(10):3138–9.

    Article  CAS  Google Scholar 

  21. Schoukroun-Barnes LR, Wagan S, White RJ. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal Chem. 2014;86(2):1131–7.

    Article  CAS  Google Scholar 

  22. White RJ, Rowe AA, Plaxco KW. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst. 2010;135(3):589–94.

    Article  CAS  Google Scholar 

  23. Stojanovic MN, de Prada P, Landry DW. Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc. 2001;123(21):4928–31.

    Article  CAS  Google Scholar 

  24. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB. Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip. Biosens Bioelectron. 2007;22(11):2525–31.

    Article  CAS  Google Scholar 

  25. Wochner A, Menger M, Orgel D, Cech B, Rimmele M, Erdmann VA, Glökler J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 2008;373(1):34–42.

  26. Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift Physik. 1959;155(2):206–22.

    Article  CAS  Google Scholar 

  27. Oesch U, Janata J. Electrochemical study of gold electrodes with anodic oxide films, I. Formation and reduction behaviour of anodic oxides on gold. Electrochim Acta. 1983;28(9):1237–46.

    Article  CAS  Google Scholar 

  28. Keighley SD, Li P, Estrela P, Migliorato P. Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosens Bioelectron. 2008;23(8):1291–7.

    Article  CAS  Google Scholar 

  29. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta. 2010;55(21):6218–27.

    Article  CAS  Google Scholar 

  30. Ilgu M, Nilsen-Hamilton M. Aptamers in analytics. Analyst. 2016;141(5):1551–68. https://doi.org/10.1039/c5an01824b .

    Article  CAS  Google Scholar 

  31. Frense D, Kang S, Schieke K, Reich P, Barthel A, Pliquett U, Nacke T, Brian C, Beckmann D. Label-free impedimetric biosensor for thrombin using the thrombin-binding aptamer as receptor. J Phys: Conference Series. 2013;434:012091.

  32. Li X, Shen L, Zhang D, Qi H, Gao Q, Ma F, Zhang C. Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioelectron. 2008;23(11):1624–30.

  33. Yang H, Ji J, Liu Y, Kong JL, Liu BH. An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun. 2009;11(1):38–40.

    Article  CAS  Google Scholar 

  34. Yao CY, Qi YZ, Zhao YH, Xiang Y, Chen QH, Fu WL. Aptamer-based piezoelectric quartz crystal microbalance biosensor array for the quantification of IgE. Biosens Bioelectron. 2009;24(8):2499–503.

    Article  CAS  Google Scholar 

  35. Papamichael KI, Kreuzer MP, Guilbault GG. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means. Sensors Actuators B Chemical. 2007;121(1):178–86.

    Article  CAS  Google Scholar 

  36. Ohuchi S, Mori Y, Nakamura Y. Evolution of an inhibitory RNA aptamer against T7 RNA polymerase. FEBS Open Bio. 2012;2:203–7.

    Article  CAS  Google Scholar 

  37. Hynek D, Krejcova L, Zitka O, Adam V, Trnkova L, Sochor J. Electrochemical study of doxorubicin interaction with different sequences of single stranded oligonucleotides. Part I. Int J Electrochem Sc. 2012;7(1):13–33.

    CAS  Google Scholar 

  38. Gui-Fang C, Jie Z, Yong-Hua T, Pin-Gang H, Yu-Zhi F, Stiborová M, Eckschlager T, Hubálek J, Kizek R. Study on the interaction between antitumor drug daunomycin and DNA. Chin J Chem. 2005;23(5):576–80.

  39. Cattoni DI, Chara O, Kaufman SB, González Flecha FL. Cooperativity in binding processes: new insights from phenomenological modeling. PLOS ONE. 2016;10(12):e0146043.

    Article  Google Scholar 

  40. Swain MD, Octain J, Benson DE. Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconj Chem. 2008;19(12):2520–6.

    Article  CAS  Google Scholar 

  41. Urmann K, Reich P, Walter JG, Beckmann D, Segal E, Scheper T. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures. J Biotechnol. 2017;257:171–7.

    Article  CAS  Google Scholar 

  42. Blouin S, Lafontaine DA. A loop–loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control. RNA. 2007;13(8):1256–67.

    Article  CAS  Google Scholar 

  43. Shi P, Zhang Y, Yu Z, Zhang S. Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci Rep. 2017;7(1):–6500.

  44. Liang G, Man Y, Jin X, Pan L, Liu X, Glökler J. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal Chim Acta. 2016;936:222–8.

  45. Istamboulié G, Paniel N, Zara L, Reguillo Granados L, Barthelmebs L, Noguer T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta. 2016;146:464–9.

    Article  Google Scholar 

  46. Lao Y-H, Peck K, Chen L-C. Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem. 2009;81:1747–54.

    Article  CAS  Google Scholar 

  47. Wochner A.. Selektion von Aptameren gegen Antibiotika und deren Einsatz in empfindlichen Assayformaten. Freie Universität Berlin. (2007).

  48. Davis JT. 40 Jahre G-Quartetts: von 5′-GMP zur Molekularbiologie und Supramolekularen Chemie. Angew Chem. 2004;116(6):684–716.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Federal Ministry of Economic Affairs and Energy within the framework of the AiF-ZIM-program for supporting this project under grant nos. ZF4019603MD6 and ZF4086507MD6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Bahner.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Parts of this work were presented at the First European / 10th German BioSensor Symposium, Potsdam, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahner, N., Reich, P., Frense, D. et al. An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Anal Bioanal Chem 410, 1453–1462 (2018). https://doi.org/10.1007/s00216-017-0786-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0786-8

Keywords

Navigation