Skip to main content
Log in

Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lactoferrin (LF) is an important multifunctional protein that comprises a large fraction of the protein mass in certain human fluids and tissues, and its concentration is often used to assess health and disease. LF can be nitrated by multiple routes, leading to changes in protein structure, and nitrated proteins can negatively impact physiological health via nitrosative stress. Despite an awareness of the detrimental effects of nitrated proteins and the importance of LF within the body, cost-effective methods for detecting and quantifying nitrated lactoferrin (NLF) are lacking. We developed a procedure to selectively quantify NLF using sandwich enzyme-linked immunosorbent assay (ELISA), utilizing a polyclonal anti-LF capture antibody paired with a monoclonal anti-nitrotyrosine detector antibody. The assay was applied to quantify NLF in samples of pure LF nitrated via two separate reactions at molar ratios of excess nitrating agent to the total number of tyrosine residues between 10/1 and 100/1. Tetranitromethane (TNM) was used as a laboratory surrogate for an environmental pathway selective for production of 3-nitrotyrosine, and sodium peroxynitrite (ONOO) was used as a surrogate for an endogenous nitration pathway. UV-vis spectroscopy (increased absorbance at 350 nm) and fluorescence spectroscopy (emission decreased by > 96%) for each reaction indicate the production of NLF. A lower limit of NLF detection using the ELISA method introduced here was calculated to be 0.065 μg mL−1, which will enable the detection of human-physiologically relevant concentrations of NLF. Our approach provides a relatively inexpensive and practical way to assess NLF in a variety of systems.

We developed a procedure to selectively quantify nitrated lactoferrin (NLF) protein using a sandwich enzyme-linked immunosorbent assay (ELISA) and verified results against several spectroscopic techniques. Our approach provides an inexpensive and practical way to assess NLF in a variety of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kanyshkova TG, Buneva VN, Nevinsky GA. Lactoferrin and its biological functions. Biochem Mosc. 2001;66(1):1–7.

    Article  CAS  Google Scholar 

  2. Vorland LH. Lactoferrin: a multifunctional glycoprotein. APMIS. 1999;107(7–12):971–81.

    Article  CAS  Google Scholar 

  3. Kijlstra A, Jeurissen SH, Koning KM. Lactoferrin levels in normal human tears. Br J Ophthalmol. 1983;67(3):199–202.

    Article  CAS  Google Scholar 

  4. Jenssen H, Hancock REW. Antimicrobial properties of lactoferrin. Biochimie. 2009;91(1):19–29.

    Article  CAS  Google Scholar 

  5. Lönnerdal B, Iyer S. Lactoferrin: molecular structure and biological function. Annu Rev Nutr. 1995;15(1):93–110.

    Article  Google Scholar 

  6. González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents. 2009;33(4):301–e1.

    Article  Google Scholar 

  7. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.

    Article  CAS  Google Scholar 

  8. Yeo W-S, Lee S-J, Lee J-R, Kim K-P. Nitrosative protein tyrosine modifications: biochemistry and functional significance. BMB Rep. 2008;41(3):194–203.

    Article  CAS  Google Scholar 

  9. Gow AJ, Duran D, Malcolm S, Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996;385(1–2):63–6.

    Article  CAS  Google Scholar 

  10. Pfeiffer S, Lass A, Schmidt K, Mayer B. Protein tyrosine nitration in cytokine-activated murine macrophages involvement of a peroxidase/nitrite pathway rather than peroxynitrite. J Biol Chem. 2001;276(36):34051–8.

    Article  CAS  Google Scholar 

  11. Dalle-Donne I, Scaloni A, Giustarini D, Cavarra E, Tell G, Lungarella G, et al. Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev. 2005;24(1):55–99.

    Article  CAS  Google Scholar 

  12. Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol. 1996;9(5):836–44.

    Article  CAS  Google Scholar 

  13. Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of its functional effects. Acc Chem Res. 2013;46(2):550–9.

    Article  CAS  Google Scholar 

  14. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313(Pt 1):17-29.

    Article  CAS  Google Scholar 

  15. Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, et al. Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol. 2017;51(8):4119–41.

    Article  CAS  Google Scholar 

  16. Lakey PSJ, Berkemeier T, Tong H, Arangio AM, Lucas K, Pöschl U, et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6:32916.

    Article  CAS  Google Scholar 

  17. Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, et al. Biological aspects of reactive nitrogen species. Biochim Biophys Acta Bioenerg. 1999;1411(2–3):385–400.

    Article  CAS  Google Scholar 

  18. Franze T, Weller MG, Niessner R, Pöschl U. Protein nitration by polluted air. Environ Sci Technol. 2005;39(6):1673–8.

    Article  CAS  Google Scholar 

  19. Franze T, Weller MG, Niessner R, Pöschl U. Enzyme immunoassays for the investigation of protein nitration by air pollutants. Analyst. 2003;128(7):824–31.

    Article  CAS  Google Scholar 

  20. Reinmuth-Selzle K, Ackaert C, Kampf CJ, Samonig M, Shiraiwa M, Kofler S, et al. Nitration of the birch pollen allergen Bet v 1.0101: efficiency and site-selectivity of liquid and gaseous nitrating agents. J Proteome Res. 2014;13(3):1570–7.

    Article  CAS  Google Scholar 

  21. Kampf CJ, Liu F, Reinmuth-Selzle K, Berkemeier T, Meusel H, Shiraiwa M, et al. Protein cross-linking and oligomerization through dityrosine formation upon exposure to ozone. Environ Sci Technol. 2015;49(18):10859–66.

    Article  CAS  Google Scholar 

  22. Shuker DE, Prevost V, Friesen MD, Lin D, Ohshima H, Bartsch H. Urinary markers for measuring exposure to endogenous and exogenous alkylating agents and precursors. Environ Health Perspect. 1993;99:33–7.

    Article  CAS  Google Scholar 

  23. Sokolovsky M, Riordan JF, Vallee BL. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966;5(11):3582–9.

    Article  CAS  Google Scholar 

  24. Crow JP, Beckman JS. Quantitation of protein tyrosine, 3-nitrotyrosine, and 3-aminotyrosine utilizing HPLC and intrinsic ultraviolet absorbance. Methods. 1995;7(1):116–20.

    Article  CAS  Google Scholar 

  25. Engvall E. [28] Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70:419–39.

    Article  CAS  Google Scholar 

  26. Jamshad K, Brennan MD, Bradley N, Beirong GAO, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J. 1998;330(2):795–801.

    Article  Google Scholar 

  27. Teuwissen B, Masson PL, Osinski P, Heremans JF. Metal-combining properties of human lactoferrin. FEBS J. 1973;35(2):366–71.

    CAS  Google Scholar 

  28. Selzle K, Ackaert C, Kampf CJ, Kunert AT, Duschl A, Oostingh GJ, et al. Determination of nitration degrees for the birch pollen allergen Bet v 1. Anal Bioanal Chem. 2013;405(27):8945–9.

    Article  CAS  Google Scholar 

  29. Vincent JP, Lazdunski M, Delaage M. On the use of tetranitromethane as a nitration reagent. The reaction of phenol side-chains in bovine and porcine trypsinogens and trypsins. FEBS J. 1970;12(2):250–7.

    CAS  Google Scholar 

  30. Rajasekariah GH, Kay GE, Russell NV, Smithyman AM. Assessment of assay sensitivity and precision in a malaria antibody ELISA. J Immunoassay Immunochem. 2003;24(1):89–112.

    Article  CAS  Google Scholar 

  31. Riordan JF, Sokolovsky M, Vallee BL. Tetranitromethane. A reagent for the nitration of tyrosine and tyrosyl residues of proteins1. J Am Chem Soc. 1966;88(17):4104–5.

    Article  CAS  Google Scholar 

  32. Sokolovsky M, Fuchs M, Riordan JF. Reaction of tetranitromethane with tryptophan and related compounds. FEBS Lett. 1970;7(2):167–70.

    Article  CAS  Google Scholar 

  33. Jankowski JJ, Kieber DJ, Mopper K. Nitrate and nitrite ultraviolet actinometers. Photochem Photobiol. 1999;70(3):319–28.

    Article  CAS  Google Scholar 

  34. Ter Steege JCA, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med. 1998;25(8):953–63.

    Article  Google Scholar 

  35. Ischiropoulos H, Zhu L, Beckman JS. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992;298(2):446–51.

    Article  CAS  Google Scholar 

  36. Kronman MJ, Holmes LG. The fluorescence of native, denatured and reduced-denatured proteins. Photochem Photobiol. 1971;14(2):113–34.

    Article  CAS  Google Scholar 

  37. Lakowicz JR. Principles of fluorescence spectroscopy: Springer Science & Business Media; 2013.

  38. Pöhlker C, Huffman JA, Pöschl U. Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos Meas Tech. 2012;5(1):37–71.

    Article  Google Scholar 

  39. Bläckberg L, Hernell O. Isolation of lactoferrin from human whey by a single chromatographic step. FEBS Lett. 1980;109(2):180–4.

    Article  Google Scholar 

  40. Crow JP, Ischiropoulos H. [17] Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol. 1996;269:185–94.

    Article  CAS  Google Scholar 

  41. De Filippis V, Frasson R, Fontana A. 3-Nitrotyrosine as a spectroscopic probe for investigating protein protein interactions. Protein Sci. 2006;15(5):976–86.

    Article  Google Scholar 

  42. Meyer A, Betzel C, Pusey M. Latest methods of fluorescence-based protein crystal identification. Acta Cryst. 2015;71(2):121–31.

    CAS  Google Scholar 

  43. abcam. Anti-Lactoferrin antibody (ab77548). 2017. Accessed 26 Jun 2017.

  44. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, et al. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol. 1997;42(3):326–34.

    Article  CAS  Google Scholar 

  45. Chou SM, Wang HS, Komai K. Colocalization of NOS and SOD1 in neurofilament accumulation within motor neurons of amyotrophic lateral sclerosis: an immunohistochemical study. J Chem Neuroanat. 1996;10(3):249–58.

    Article  CAS  Google Scholar 

  46. Aggarwal S, Gross CM, Kumar S, Datar S, Oishi P, Kalkan G, et al. Attenuated vasodilatation in lambs with endogenous and exogenous activation of cGMP signaling: role of protein kinase G nitration. J Cell Physiol. 2011;226(12):3104–13.

    Article  CAS  Google Scholar 

  47. Estillore AD, Trueblood JV, Grassian VH. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem Sci. 2016;7(11):6604–16.

    Article  CAS  Google Scholar 

  48. Ashki N, Chan AM, Qin Y, Wang W, Kiyohara M, Lin L, et al. Peroxynitrite upregulates angiogenic factors VEGF-A, BFGF, and HIF-1α in human corneal limbal epithelial cells. Invest Ophthalmol Vis Sci. 2014;55(3):1637–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Amani Alhalwani acknowledges scholarship support from King Saud bin Abdulaziz University for Health Sciences (KSAU-HS).

Funding

This study received funding support through a grant from the University of Denver Knoebel Institute for Healthy Aging (KIHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alex Huffman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhalwani, A.Y., Repine, J.E., Knowles, M.K. et al. Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Anal Bioanal Chem 410, 1389–1396 (2018). https://doi.org/10.1007/s00216-017-0779-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0779-7

Keywords

Navigation