Skip to main content
Log in

In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS) method for in situ detection and analysis of the intranuclear biomolecular information of a cell has been developed based on a small, biocompatible, nuclear-targeting alkyne-tagged deoxyribonucleic acid (DNA) probe (5-ethynyl-2′-deoxyuridine, EDU) that can specially accumulate in the cell nucleus during DNA replications to precisely locate the nuclear region without disturbance in cell biological activities and functions. Since the specific alkyne group shows a Raman peak in the Raman-silent region of cells, it is an interior label to visualize the nuclear location synchronously in real time when measuring the SERS spectra of a cell. Because no fluorescent-labeled dyes were used for locating cell nuclei, this method is simple, nondestructive, non- photobleaching, and valuable for the in situ exploration of vital physiological processes with DNA participation in cell organelles.

A universal strategy was developed to accurately locate the nuclear region and obtain precise molecular information of cell nuclei by SERS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226:466–8.

    Article  CAS  Google Scholar 

  2. Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ, et al. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery. Adv Funct Mater. 2009;19:3580–9.

    Article  CAS  Google Scholar 

  3. Fan WP, Shen B, Bu WB, Zheng XP, He QJ, Cui ZW, et al. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chem Sci. 2015;6:1747–53.

    Article  CAS  Google Scholar 

  4. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134:5722–5.

    Article  CAS  Google Scholar 

  5. Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z, et al. Intranuclear biophotonics by smart design of nuclear-targeting photo-/radio-sensitizers co-loaded upconversion nanoparticles. Biomaterials. 2015;69:89–98.

    Article  CAS  Google Scholar 

  6. Cheng J, Xie X. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350:aaa8870.

    Article  Google Scholar 

  7. Qian X, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.

    Article  CAS  Google Scholar 

  8. Taketani A, Hariyani R, Ishigaki M, Andriana BB, Sato H. Raman endoscopy for the in situ investigation of advancing colorectal tumors in live model mice. Analyst. 2013;138:4183–90.

    Article  CAS  Google Scholar 

  9. Li H, Wang H, Huang D, Liang L, Gu Y, Liang C, et al. Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Rev Sci Instrum. 2014;85:056109.

    Article  Google Scholar 

  10. Panikkanvalappil SR, Hira SM, Mahmoud MA, El-Sayed MA. Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy. J Am Chem Soc. 2014;136:15961–8.

    Article  CAS  Google Scholar 

  11. Kang B, Austin LA, El-Sayed MA. Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. ACS Nano. 2014;8:4883–92.

    Article  CAS  Google Scholar 

  12. Austin LA, Kang B, El-Sayed MA. A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J Am Chem Soc. 2013;135:4688–91.

    Article  CAS  Google Scholar 

  13. Aioub M, El-Sayed MA. A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc. 2016;138:1258–64.

    Article  CAS  Google Scholar 

  14. Liang L, Huang D, Wang H, Li H, Xu S, Chang Y, et al. In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Anal Chem. 2015;87:2504–10.

    Article  CAS  Google Scholar 

  15. Deng R, Qu H, Liang L, Zhang J, Zhang B, Huang D, et al. Tracing the therapeutic process of targeted aptamer/drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy. Anal Chem. 2017;89:2844–51.

    Article  CAS  Google Scholar 

  16. Yamakoshi H, Dodo K, Okada M, Ando J, Palonpon A, Fujita K, et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J Am Chem Soc. 2011;133:6102–5.

    Article  CAS  Google Scholar 

  17. Wei L, Hu F, Shen Y, Chen Z, Yu Y, Lin CC, et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat Methods. 2014;11:410–2.

    Article  CAS  Google Scholar 

  18. Yamakoshi H, Dodo K, Palonpon A, Ando J, Fujita K, Kawata S, et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J Am Chem Soc. 2012;134:20681–9.

    Article  CAS  Google Scholar 

  19. Lin L, Tian X, Hong S, Dai P, You Q, Wang R, et al. A bioorthogonal Raman reporter strategy for SERS detection of glycans on live cells. Angew Chem Int Ed. 2013;52:7266–71.

    Article  CAS  Google Scholar 

  20. Chen Y, Ren JQ, Zhang XG, Wu DY, Shen AG, Hu JM. Alkyne-modulated surface-enhanced Raman scattering-palette for optical interference-free and multiplex cellular imaging. Anal Chem. 2016;88:6115–9.

    Article  CAS  Google Scholar 

  21. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. PNAS. 2008;105:2415–20.

    Article  CAS  Google Scholar 

  22. Huefner A, Kuan WL, Barker RA, Mahajan S. Intracellular SERS nanoprobes for distinction of different neuronal cell types. Nano Lett. 2013;13:2463–70.

    Article  CAS  Google Scholar 

  23. Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc. 2010;132:1517–9.

    Article  CAS  Google Scholar 

  24. Pante N, Kann M. Nuclear pore complex is able to transport macromolecules with diameters of similar to 39 nm. Mol Biol Cell. 2002;13:425–34.

    Article  CAS  Google Scholar 

  25. Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, et al. Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc. 2003;125:4700–1.

    Article  CAS  Google Scholar 

  26. Joo S-W, Kim K. Adsorption of phenylacetylene on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J Raman Spectrosc. 2004;35:549–54.

    Article  CAS  Google Scholar 

  27. Kennedy DC, McKay CS, Tay LL, Rouleau Y, Pezacki JP. Carbon-bonded silver nanoparticles: alkyne-functionalized ligands for SERS imaging of mammalian cells. Chem Commun. 2011;47:3156–8.

    Article  CAS  Google Scholar 

  28. Ando J, Asanuma M, Dodo K, Yamakoshi H, Kawata S, Fujita K, et al. Alkyne-tag SERS screening and identification of small-molecule-binding sites in protein. J Am Chem Soc. 2016;138:13901–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 21373096, 21573087, 21573092, 91441105, and 31271478) and Science and Technology Development plan of Jilin Province in China (20150203013GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuping Xu or Chongyang Liang.

Ethics declarations

Conflict of interest

The authors declare that they have neither financial nor nonfinancial conflicts of interest.

Ethics

Breast cancer cells (MCF-7) belong to cell line and we bought this cell line from Shanghai ATCC cell gank, which granted the permission of the Human Research Ethics Committee of the country for manipulations of human cells.

Electronic supplementary material

ESM 1

(PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liang, L., Guan, X. et al. In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Anal Bioanal Chem 410, 585–594 (2018). https://doi.org/10.1007/s00216-017-0761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0761-4

Keywords