Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 19, pp 4679–4687 | Cite as

Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry

  • Elena Fernández
  • Lorena VidalEmail author
  • Antonio CanalsEmail author
Research Paper
Part of the following topical collections:
  1. Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry

Abstract

A new, fast, easy to handle, and environmentally friendly magnetic headspace single-drop microextraction (Mag-HS-SDME) based on a magnetic ionic liquid (MIL) as an extractant solvent is presented. A small drop of the MIL 1-ethyl-3-methylimidazolium tetraisothiocyanatocobaltate(II) ([Emim]2[Co(NCS)4]) is located on one end of a small neodymium magnet to extract nine chlorobenzenes (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, and pentachlorobenzene) as model analytes from water samples prior to thermal desorption-gas chromatography-mass spectrometry determination. A multivariate optimization strategy was employed to optimize experimental parameters affecting Mag-HS-SDME. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; MIL volume, 1 μL; extraction time, 10 min; stirring speed, 1500 rpm; and ionic strength, 15% NaCl (w/v)), obtaining a linear response from 0.05 to 5 μg L−1 for all analytes. The repeatability of the proposed method was evaluated at 0.7 and 3 μg L−1 spiking levels and coefficients of variation ranged between 3 and 18% (n = 3). Limits of detection were in the order of nanograms per liter ranging from 4 ng L−1 for 1,4-dichlorobenzene and 1,2,3,4-tetrachlorobenzene to 8 ng L−1 for 1,2,4,5-tetrachlorobenzene. Finally, tap water, pond water, and wastewater were selected as real water samples to assess the applicability of the method. Relative recoveries varied between 82 and 114% showing negligible matrix effects.

Graphical abstract

Magnetic headspace single-drop microextraction followed by thermal desorption-gas chromatography-mass spectrometry

Keywords

Magnetic ionic liquid Magnetic headspace single-drop microextraction Thermal desorption-gas chromatography-mass spectrometry Chlorobenzenes Water samples 

Abbreviations

CV

Coefficient of variation

DBB

Dibromobenzene

DCB

Dichlorobenzene

[Emim]2[Co(NCS)4]

1-Ethyl-3-methylimidazolium tetraisothiocyanatocobaltate(II)

GC

Gas chromatography

ILs

Ionic liquids

IS

Internal standard

LOD

Limit of detection

LOQ

Limit of quantification

LPME

Liquid-phase microextraction

Mag-HS-SDME

Magnetic headspace single-drop microextraction

MIL

Magnetic ionic liquid

MS

Mass spectrometry

PeCB

Pentachlorobenzene

TCB

Trichlorobenzene

TD

Thermal desorption

TeCB

Tetrachlorobenzene

TG

Thermogravimetry

Notes

Acknowledgements

The authors would like to thank Vicerrectorado de Investigación y Transferencia del Conocimiento of the University of Alicante (UAUSTI16-04), Generalitat Valenciana (project nos. GVA/2014/096 and PROMETEO/2013/038), and Ministerio de Economía, Industria y Competitividad (project no. CTQ2016-79991-R, AEI/FEDER, UE) for the financial support. The authors would also like to thank Dr. Martin Köckerling from the Department of Inorganic Chemistry of the University of Rostock (Germany) for the MIL supply. E. Fernández thanks Ministerio de Educación for her FPU grant (FPU13/03125).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2017_755_MOESM1_ESM.pdf (157 kb)
ESM 1 (PDF 157 kb)

References

  1. 1.
    Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661:1–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M. The roles of ionic liquids in sorptive microextraction techniques. Trends Anal Chem. 2010;29:602–16.CrossRefGoogle Scholar
  3. 3.
    Zhou Q, Bai H, Xie G, Xiao J. Temperature-controlled ionic liquid dispersive liquid phase micro-extraction. J Chromatogr A. 2008;1177:43–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Baghdadi M, Shemirani F. In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta. 2009;634:186–91.CrossRefPubMedGoogle Scholar
  5. 5.
    Yao C, Anderson JL. Dispersive liquid-liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem. 2009;395:1491–502.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Y, Sun Y, Xu B, Li X, Jin R, Zhang H, et al. Magnetic ionic liquid-based dispersive liquid-liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. J Chromatogr A. 2014;1373:9–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, et al. Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid-liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta. 2015;888:67–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, et al. Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem. 2015;87:1552–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang X, Xu G, Chen P, Liu X, Fang Y, Yang S, et al. Arsenic speciation analysis in environmental water, sediment and soil samples by magnetic ionic liquid-based air-assisted liquid-liquid microextraction. RSC Adv. 2016;6:110247–54.CrossRefGoogle Scholar
  10. 10.
    Chatzimitakos T, Binellas C, Maidatsi K, Stalikas C. Magnetic ionic liquid in stirring-assisted drop-breakup microextraction: proof-of-concept extraction of phenolic endocrine disrupters and acidic pharmaceuticals. Anal Chim Acta. 2016;910:53–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Trujillo-Rodríguez MJ, Nacham O, Clark KD, Pino V, Anderson JL, Ayala JH, et al. Magnetic ionic liquids as non-conventional extraction solvents for the determination of polycyclic aromatic hydrocarbons. Anal Chim Acta. 2016;934:106–13.CrossRefPubMedGoogle Scholar
  12. 12.
    Yu H, Merib J, Anderson JL. Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J Chromatogr A. 2016;1463:11–9.CrossRefPubMedGoogle Scholar
  13. 13.
    An J, Rahn KL, Anderson JL. Headspace single drop microextraction versus dispersive liquid-liquid microextraction using magnetic ionic liquid extraction solvents. Talanta. 2017;167:268–78.CrossRefPubMedGoogle Scholar
  14. 14.
    Chisvert A, Benedé JL, Anderson JL, Pierson SA, Salvador A. Introducing a new and rapid microextraction approach based on magnetic ionic liquids: stir bar dispersive liquid microextraction. Anal Chim Acta. 2017;983:130–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Benedé JL, Anderson JL, Chisvert A. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction. Talanta. 2018;176:253–61.CrossRefPubMedGoogle Scholar
  16. 16.
    Trujillo-Rodríguez MJ, Pino V, Anderson JL. Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta. 2017;172:86–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL. Magnetic ionic liquids in analytical chemistry: a review. Anal Chim Acta. 2016;934:9–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116:1–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Jeannot MA, Cantwell FF. Mass transfer characteristics of solvent extraction into a single drop at the tip of a syringe needle. Anal Chem. 1997;69:235–9.CrossRefGoogle Scholar
  20. 20.
    Chisvert A, Román IP, Vidal L, Canals A. Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography. Determination of chlorobenzenes in real water samples as model analytical application. J Chromatogr A. 2009;1216:1290–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Vidal L, Domini CE, Grané N, Psillakis E, Canals A. Microwave-assisted headspace single-drop microextraction of chlorobenzenes from water samples. Anal Chim Acta. 2007;592:9–15.CrossRefPubMedGoogle Scholar
  22. 22.
    Vidal L, Psillakis E, Domini CE, Grané N, Marken F, Canals A. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Anal Chim Acta. 2007;584:189–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao F, Lu S, Du W, Zeng B. Ionic liquid-based headspace single-drop microextraction coupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim Acta. 2009;165:29–33.CrossRefGoogle Scholar
  24. 24.
    Malcom HM, Howe PD, Dobson S. Chlorobenzenes other than hexachlorobenzene: environmental aspects. In: Concise International Chemical Assessment Documents. 2004. http://www.inchem.org/documents/cicads/cicads/cicad60.htm. Accesed 26 Oct 2017.
  25. 25.
    U.S. Department of Health and Human Servicies. 14th report on carcinogens. 2016. https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html. Accesed 26 Oct 2017.
  26. 26.
    Peppel T, Köckerling M, Geppert-Rybczyńska M, Ralys RV, Lehmann JK, Verevkin SP, et al. Low-viscosity paramagnetic ionic liquids with doubly charged [Co(NCS)4]2− ions. Angew Chemie. 2010;49:7116–9.CrossRefGoogle Scholar
  27. 27.
    Vidal L, Ahmadi M, Fernández E, Madrakian T, Canals A. Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry. Anal Chim Acta. 2017;971:40–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Geppert-Rybczyńska M, Lehmann JK, Peppel T, Köckerling M, Heintz A. Studies of physicochemical and thermodynamic properties of the paramagnetic 1-alkyl-3-methylimidazolium ionic liquids (EMIm)2[Co(NCS)4] and (BMIm)2[Co(NCS)4]. J Chem Eng Data. 2010;55:5534–8.CrossRefGoogle Scholar
  29. 29.
    Santos E, Albo J, Rosatella A, Afonso CAM, Irabien Á. Synthesis and characterization of magnetic ionic liquids (MILs) for CO2 separation. J Chem Technol Biotechnol. 2014;89:866–71.CrossRefGoogle Scholar
  30. 30.
    Del Sesto RE, McCleskey TM, Burrell AK, Baker GA, Thompson JD, Scott BL, Wilkes JS, Williams P (2008) Structure and magnetic behavior of transition metal based ionic liquids. Chem Commun 447–9.Google Scholar
  31. 31.
    Montgomery DC. Design and analysis of experiments. 7th ed. New Jersey (USA): Wiley; 2009.Google Scholar
  32. 32.
    Jeannot MA, Przyjazny A, Kokosa JM. Single drop microextraction—development, applications and future trends. J Chromatogr A. 2010;1217:2326–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry. 5th ed. London (UK): Pearson Prentice Hall; 2005.Google Scholar
  34. 34.
    Mackay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data. 1981;10:1175–89.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain

Personalised recommendations