Skip to main content

Advertisement

Log in

Reductive oxyamination: a method for the qualitative and quantitative analysis of monosaccharides with a new aminooxy reagent using high-performance liquid chromatography with fluorescence detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Derivatization of carbohydrates with aminooxy agents to form oximes can be used for qualitative and quantitative analysis of carbohydrates; however, the formation of isomeric products limits its application. A new reductive oxyamination procedure developed for the analysis of monosaccharides with a novel fluorescent O-substituted aminooxy reagent, 4-((aminooxy)methyl)-6-chloro-7-hydroxycoumarin (AOCC), is reported. In this procedure, monosaccharides undergo an oxime formation reaction with AOCC and are then readily reduced with 2-picoline–borane, followed by analysis with high-performance liquid chromatography with fluorescence detection. Good separation of five monosaccharide derivatives was achieved within 40 min with acetonitrile–water–tetrahydrofuran as the mobile phase. The detection limits were on the order of femtomoles. The linear range was 0.2–4000 nM, with a good correlation coefficient (R ≥ 0.9985). Furthermore, the method was applied for analysis of real samples, such as bovine milk powder, without complicated and tedious sample treatment. This reductive oxyamination method circumvents the problem caused by oxime isomers and can be used for the highly sensitive and selective analysis of monosaccharides with high accuracy, providing an effective and promising method for the analysis of carbonyls with aminooxy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Gagneux P, Varki A. Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology. 1999;9(8):747–55.

    Article  CAS  Google Scholar 

  2. Theodoratou E, Campbell H, Ventham NT, Kolarich D, Pucic-Bakovic M, Zoldos V, et al. The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol. 2014;11(10):588–600.

    Article  CAS  Google Scholar 

  3. Gaunitz S, Nagy G, Pohl NLB, Novotny MV. Recent advances in the analysis of complex glycoproteins. Anal Chem. 2017;89(1):389–413.

    Article  CAS  Google Scholar 

  4. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15(9):540–55.

    Article  CAS  Google Scholar 

  5. Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350(1):1–23.

    Article  CAS  Google Scholar 

  6. Ruhaak L, Zauner G, Huhn C, Bruggink C, Deelder A, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.

    Article  CAS  Google Scholar 

  7. Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B. 2011;879(17-18):1196–225.

    Article  CAS  Google Scholar 

  8. Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995;230(2):229–38.

    Article  CAS  Google Scholar 

  9. Lattova E, Perreault H. Labelling saccharides with phenylhydrazine for electrospray and matrix-assisted laser desorption-ionization mass spectrometry. J Chromatogr B. 2003;793(1):167–79.

    Article  CAS  Google Scholar 

  10. You J, Sheng X, Ding C, Sun Z, Suo Y, Wang H, et al. Detection of carbohydrates using new labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone by capillary zone electrophoresis with absorbance (UV). Anal Chim Acta. 2008;609(1):66–75.

    Article  CAS  Google Scholar 

  11. Kalia J, Raines RT. Hydrolytic stability of hydrazones and oximes. Angew Chem Int Ed. 2008;47(39):7523–6.

    Article  CAS  Google Scholar 

  12. Dirksen A, Hackeng TM, Dawson PE. Nucleophilic catalysis of oxime ligation. Angew Chem Int Ed. 2006;45(45):7581–4.

    Article  CAS  Google Scholar 

  13. Chen N, Xie J. N-O linkage in carbohydrates and glycoconjugates. Org Biomol Chem. 2016;14(47):11028–47.

    Article  CAS  Google Scholar 

  14. Zhang Y, Yu M, Zhang C, Ma W, Zhang Y, Wang C, et al. Highly selective and ultra fast solid-phase extraction of N-glycoproteome by oxime click chemistry using aminooxy-functionalized magnetic nanoparticles. Anal Chem. 2014;86(15):7920–4.

    Article  CAS  Google Scholar 

  15. Agten SM, Dawson PE, Hackeng TM. Oxime conjugation in protein chemistry: from carbonyl incorporation to nucleophilic catalysis. J Pept Sci. 2016;22(5):271–9.

    Article  CAS  Google Scholar 

  16. Ramsay SL, Freeman C, Grace PB, Redmond JW, MacLeod JK. Mild tagging procedures for the structural analysis of glycans. Carbohydr Res. 2001;333(1):59–71.

    Article  CAS  Google Scholar 

  17. Wen HY, Hsu PH, Chen GS, Fang JM. Regenerative labeling of saccharides. RSC Adv. 2013;3(24):9530–3.

    Article  CAS  Google Scholar 

  18. Song Y, Chen Z, Li H. Advances in coumarin-derived fluorescent chemosensors for metal ions. Curr Org Chem. 2012;16(22):2690–707.

    Article  CAS  Google Scholar 

  19. Reddie KG, Humphries WH, Bain CP, Payne CK, Kemp ML, Murthy N. Fluorescent coumarin thiols measure biological redox couples. Org Lett. 2012;14(3):680–3.

    Article  CAS  Google Scholar 

  20. Hua C, Zhang K, Xin M, Ying T, Gao J, Jia J, et al. High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study. RSC Adv. 2016;6(54):49221–7.

    Article  CAS  Google Scholar 

  21. Brouwer AM. Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem. 2011;83(12):2213–28.

    Article  CAS  Google Scholar 

  22. Atkins RL, Dan EB. Substituted coumarins and azacoumarins. Synthesis and fluorescent properties. J Organomet Chem. 1978;43(10):1975–80.

    Article  CAS  Google Scholar 

  23. Baudendistel OR, Wieland DE, Schmidt MS, Wittmann V. Real-time NMR studies of oxyamine ligations of reducing carbohydrates under equilibrium conditions. Chem Eur J. 2016;22(48):17359–65.

    Article  CAS  Google Scholar 

  24. Thygesen MB, Munch H, Sauer J, Clo E, Jorgensen MR, Hindsgaul O, et al. Nucleophilic catalysis of carbohydrate oxime formation by anilines. J Organomet Chem. 2010;75(5):1752–5.

    Article  CAS  Google Scholar 

  25. Uchiyama S, Inaba Y, Matsumoto M, Suzuki G. Reductive amination of aldehyde 2,4-dinitorophenylhydrazones using 2-picoline borane and high-performance liquid chromatographic analysis. Anal Chem. 2009;81(1):485–9.

    Article  CAS  Google Scholar 

  26. Ruhaak LR, Steenvoorden E, Koeleman CA, Deelder AM, Wuhrer M. 2-Picoline-borane: a non-toxic reducing agent for oligosaccharide labeling by reductive amination. Proteomics. 2010;10(12):2330–6.

    Article  CAS  Google Scholar 

  27. Kawase Y, Yamagishi T, Kato JY, Kutsuma T, Kataoka T, Iwakuma T, et al. Reductive alkylation of hydrazine derivatives with α-picoline-borane and its applications to the syntheses of useful compounds related to active pharmaceutical ingredients. J Cheminformatics. 2014;46(4):455–64.

    Google Scholar 

  28. Ali MFB, Kishikawa N, Ohyama K, Mohamed HAM, Abdel-Wadood HM, Mohamed AM, et al. Chromatographic determination of aliphatic aldehydes in human serum after pre-column derivatization using 2,2'-furil, a novel fluorogenic reagent. J Chromatogr A. 2013;1300:199–203.

    Article  CAS  Google Scholar 

  29. Fang J, Qin G, Ma J, She YM. Quantification of plant cell wall monosaccharides by reversed-phase liquid chromatography with 2-aminobenzamide pre-column derivatization and a non-toxic reducing reagent 2-picoline borane. J Chromatogr A. 2015;1414:122–8.

    Article  CAS  Google Scholar 

  30. Stepan H, Staudacher E. Optimization of monosaccharide determination using anthranilic acid and 1-phenyl-3-methyl-5-pyrazolone for gastropod analysis. Anal Biochem. 2011;418(1):24–9.

    Article  CAS  Google Scholar 

  31. Cai ZP, Hagan AK, Wang MM, Flitsch SL, Liu L, Voglmeir J. 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates. Anal Chem. 2014;86(10):5179–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (21405117 to YL and 21472144 to XH) and the Fundamental Research Funds for the Central Universities (Wuhan University of Technology 2016-IB-005, 2016-IB-007, and 2017-IB-007) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yawei Lin or Xiaosong Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 4.13 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Guan, Z., Cai, H. et al. Reductive oxyamination: a method for the qualitative and quantitative analysis of monosaccharides with a new aminooxy reagent using high-performance liquid chromatography with fluorescence detection. Anal Bioanal Chem 410, 79–89 (2018). https://doi.org/10.1007/s00216-017-0693-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0693-z

Keywords