Skip to main content

Advertisement

Log in

Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed.

Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Disease outbreaks news. www.who.int/csr/don/en. Accessed 1 June 2017.

  2. Saker L, Lee K, Cannito B, Gilmore A, Campbell-Lendrum D. Globalization and infectious diseases: a review of the linkages. Special Topics No. 3. UNICEF/UNDP/World Bank/WHO 2004; 1–67

  3. Gracias KS, McKillip JL. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can J Microbiol. 2004;50:883–90.

    Article  CAS  Google Scholar 

  4. Niemz A, Ferguson TM, Boyle DS. Point-of-care nucleic acid testing for infectious disease. Trends Biotechnol. 2011;29(5):240–50.

    Article  CAS  Google Scholar 

  5. Accessible quality-assured diagnostics. 2009 annual report. Available from: www.who.int/tdr/publications/about-tdr/annual-reports/bl7-annual-report/en/. Accessed 1 June 2017.

  6. Li J, Macdonald J. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron. 2015;64:196–211.

    Article  CAS  Google Scholar 

  7. Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800.

    Article  CAS  Google Scholar 

  8. Kong H, Vincent M, Xu Y. Helicase dependent amplification of nucleic acids. Patent US. 2007;7282328:B2.

    Google Scholar 

  9. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol. 2002;12:123–33.

    Article  CAS  Google Scholar 

  10. An L, Tang W, Ranalli TA, Kim H-J, Wytiaz J, Kong H. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem. 2005;280(32):28952–8.

    Article  CAS  Google Scholar 

  11. Primer3 program. http://primer3.ut.ee/. Accessed 1 June 2017.

  12. PrimerQuest program. https://eu.idtdna.com/Primerquest/Home/Index. Accessed 1 June 2017.

  13. Biohelix Corporation. http://biohelix.com. Accessed 1 June 2017.

  14. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.

    Article  CAS  Google Scholar 

  15. Primer-BLAST. https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Accessed 1 June 2017.

  16. Mahalanabis M, Do J, Almuayad H, Zhang JY, Klapperich CM. Erratum to: An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdevices. 2011;13:599–602.

    Article  Google Scholar 

  17. Ao W, Aldous S, Woodruff E, Hicke B, Rea L, Kreiswirth B, et al. Rapid detection of rpoB gene mutations conferring rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol. 2012;50(7):2433–40.

    Article  CAS  Google Scholar 

  18. Hoshika S, Chen F, Leal NA, Benner SA. Artificial genetic systems: self-avoiding DNA in PCR and multiplexed PCR. Angew Chem Int Ed. 2010;49:5554–7.

    Article  CAS  Google Scholar 

  19. Yang Z, McLenddon C, Hutter D, Bradlwy DM, Hoshika S, Frye CB, et al. Helicase-dependent isothermal amplification of DNA and RNA by using self-avoiding molecular recognition systems. ChemBioChem. 2015;16:1365–70.

    Article  CAS  Google Scholar 

  20. Korfhage C, van Ooyen S. Primers for helicase dependent amplification and their methods of use. Patent US. 2012;9074248:B1.

    Google Scholar 

  21. Arif M, Aguilar-Moreno GS, Wayadande A, Fletcher J, Ochoa-Corona FM. Primer modification improves rapid and sensitive in vitro and field-deployable assays for detection of high plains virus variants. Appl Environ Microbiol. 2014;80(1):320–7.

    Article  CAS  Google Scholar 

  22. Doseeva V, Forbes T, Wolff J, Khripin Y, O’Neil D, Rothmann T, et al. Multiplex isothermal helicase-dependent amplification assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Diagn Microbiol Infect Dis. 2011;71:354–65.

    Article  CAS  Google Scholar 

  23. Tong Y, Lemieux B, Kong H. Multiple strategies to improve sensitivity, speed, and robustness of isothermal nucleic acid amplification for rapid pathogen detection. BMC Biotechnol. 2011;11:50.

    Article  CAS  Google Scholar 

  24. Chen F, Zhang D, Zhang Q, Zuo X, Fan C, Zhao Y. Zero-background helicase-dependent amplification and its application to reliable assay of telomerase activity in cancer cell by eliminating primer-dimer artifacts. ChemBioChem. 2016;17:1171–6.

    Article  CAS  Google Scholar 

  25. Goldmeyer J, Kong H, Tang W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn. 2007;9(5):639–44.

    Article  CAS  Google Scholar 

  26. Motré A, Li Y, Kong H. Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase. Gene. 2008;420:17–22.

    Article  Google Scholar 

  27. Sedighi A, Oberc C, Whitehall V, Li PCH. NanoHDA: a nanoparticle-assisted isothermal amplification technique for genotyping assays. Nano Res. 2017;10(1):12–21.

    Article  CAS  Google Scholar 

  28. Li H, Huang J, Lv J, An H, Zhang X, Zhang Z, et al. Nanoparticle PCR: nanogold-assisted PCR with enhanced specificity. Angew Chem Int Ed. 2005;44:5100–3.

    Article  CAS  Google Scholar 

  29. Barbieri D, Venturoli S, Rosl F, Rincon-Orozco B. Detection of high-risk human papillomavirus type 16 and 18 using isothermal helicase-dependent amplification. Diagn Microbiol Infect Dis. 2014;79(2):178–82.

    Article  CAS  Google Scholar 

  30. Ramalingam N, Liu HB, Dai CC, Jiang Y, Wang H, Wang Q, K MH, Gong HQ (2009) Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed Microdevices 11(5):1007–1020.

  31. Barreda-García S, González-Álvarez MJ, de-los-Santos-Álvarez N, Palacios-Gutiérrez JJ, Miranda-Ordieres AJ, Lobo-Castañón MJ. Attomolar quantitation of Mycobacterium tuberculosis by asymmetric helicase-dependent isothermal DNA-amplification and electrochemical detection. Biosens Bioelectron. 2015;68:122–8.

  32. Barreda-García S, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Comparison of isothermal helicase-dependent amplification and PCR for the detection of Mycobacterium tuberculosis by an electrochemical genomagnetic assay. Anal Bioanal Chem. 2016;408(30):8603–10.

    Article  Google Scholar 

  33. Pasko C, Hicke B, Dunn J, Jaeckel H, Nieuwlandt D, Weed D, et al. Staph ID/R: a rapid method for determining Staphylococcus species identity and detecting the mecA gene directly from positive blood culture. J Clin Microbiol. 2012;50(3):810–7.

    Article  CAS  Google Scholar 

  34. Jenison R, Jaeckel H, Klonoski J, Latorra D, Wiens J. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor. Analyst. 2014;139(15):3763–9.

    Article  CAS  Google Scholar 

  35. Kivlehan F, Mavre F, Talini L, Limoges B, Marchal D. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids. Analyst. 2011;136(18):3635–42.

    Article  CAS  Google Scholar 

  36. Tong Y, Tang W, Kim HJ, Pan X, Ranalli T, Kong H. Development of isothermal TaqMan assays for detection of biothreat organisms. BioTechniques. 2008;45(5):543–57.

    Article  CAS  Google Scholar 

  37. O'Neil D, Doseeva V, Rothmann T, Wolff J, Nazarenko I. Evaluation of Chlamydia trachomatis and Neisseria gonorrhoeae detection in urine, endocervical, and vaginal specimens by a multiplexed isothermal thermophilic helicase-dependent amplification (tHDA) assay. J Clin Microbiol. 2011;49(12):4121–5.

    Article  Google Scholar 

  38. Gaydos CA, Schwebke J, Dombrowski J, Marrazzo J, Coleman J, Silver B, et al. Clinical performance of the Solana® point-of-care trichomonas assay from clinician-collected vaginal swabs and urine specimens from symptomatic and asymptomatic women. Expert Rev Mol Diagn. 2017;17(3):303–6.

  39. Craw P, Mackay RE, Naveenathayalan A, Hudson C, Branavan M, Sadiq ST, et al. A simple, low-cost platform for real-time isothermal nucleic acid amplification. Sensors. 2015;15(9):23418–30.

    Article  CAS  Google Scholar 

  40. Chow WH, McCloskey C, Tong Y, Hu L, You Q, Kelly CP, et al. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn. 2008;10(5):452–8.

    Article  CAS  Google Scholar 

  41. Goldmeyer J, Li H, McCormac M, Cook S, Stratton C, Lemieux B, et al. Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J Clin Microbiol. 2008;46(4):1534–6.

    Article  CAS  Google Scholar 

  42. Faron ML, Ledeboer NA, Granato P, Daly JA, Pierce K, Pancholi P, et al. Detection of Group A Streptococcus in pharyngeal swab specimens by use of the AmpliVue GAS isothermal helicase-dependent amplification assay. J Clin Microbiol. 2015;53(7):2365–7.

    Article  CAS  Google Scholar 

  43. Lemieux B, Li Y, Kong H, Tang YW. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses. Expert Rev Mol Diagn. 2012;12(5):437–43.

    Article  CAS  Google Scholar 

  44. Kim HJ, Tong Y, Tang W, Quimson L, Cope VA, Pan X, et al. A rapid and simple isothermal nucleic acid amplification test for detection of herpes simplex virus types 1 and 2. J Clin Virol. 2011;50(1):26–30.

    Article  CAS  Google Scholar 

  45. Jordan JA, Ibe CO, Moore MS, Host C, Simon GL. Evaluation of a manual DNA extraction protocol and an isothermal amplification assay for detecting HIV-1 DNA from dried blood spots for use in resource-limited settings. J Clin Virol. 2012;54(1):11–4.

    Article  CAS  Google Scholar 

  46. Li Y, Kumar N, Gopalakrishnan A, Ginocchio C, Manji R, Bythrow M, et al. Detection and species identification of malaria parasites by isothermal tHDA amplification directly from human blood without sample preparation. J Mol Diagn. 2013;15(5):634–41.

    Article  CAS  Google Scholar 

  47. Gill P, Amini M, Ghaemi A, Shokouhizadeh L, Abdul-Tehrani H, Karami A, et al. Detection of Helicobacter pylori by enzyme-linked immunosorbent assay of thermophilic helicase-dependent isothermal DNA amplification. Diagn Microbiol Infect Dis. 2007;59(3):243–9.

    Article  CAS  Google Scholar 

  48. Schwenkbier L, Pollok S, Rudloff A, Sailer S, Cialla-May D, Weber K, et al. Non-instrumented DNA isolation, amplification and microarray-based hybridization for a rapid on-site detection of devastating Phytophthora kernoviae. Analyst. 2015;140(19):6610–8.

    Article  CAS  Google Scholar 

  49. Jenison R, Yang S, Haeberli A, Polisky B. Interference-based detection of nucleic acid targets on optically coated silicon. Nat Biotechnol. 2001;19(1):62–5.

    Article  CAS  Google Scholar 

  50. Schwenkbier L, Pollok S, Koenig S, Urban M, Werres S, Cialla-May D, et al. Towards on-site testing of Phytophthora species. Anal Methods. 2015;7(1):211–7.

    Article  CAS  Google Scholar 

  51. Torres-Chavolla E, Alocilja EC. Nanoparticle based DNA biosensor for tuberculosis detection using thermophilic helicase-dependent isothermal amplification. Biosens Bioelectron. 2011;26(11):4614–8.

    Article  CAS  Google Scholar 

  52. Noor MO, Hrovat D, Moazami-Goudarzi M, Espie GS, Krull UJ. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection. Anal Chim Acta. 2015;885:156–65.

    Article  CAS  Google Scholar 

  53. Noor MO, Shahmuradyan A, Krull UJ. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer. Anal Chem. 2013;85(3):1860–7.

    Article  CAS  Google Scholar 

  54. Linnes JC, Rodriguez NM, Liu L, Klapperich CM. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics. Biomed Microdevices. 2016;18(2):30.

    Article  CAS  Google Scholar 

  55. Shetty P, Ghosh D, Singh M, Tripathi A, Paul D. Rapid amplification of Mycobacterium tuberculosis DNA on a paper substrate. RSC Adv. 2016;6(61):56205–12.

    Article  CAS  Google Scholar 

  56. Linnes JC, Fan A, Rodriguez NM, Lemieux B, Kong H, Klapperich CM. Paper-based molecular diagnostic for Chlamydia trachomatis. RSC Adv. 2014;4(80):42245–51.

    Article  CAS  Google Scholar 

  57. Huang S, Do J, Mahalanabis M, Fan A, Zhao L, Jepeal L, et al. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis. Plos One. 2013;8(3):e60059.

    Article  CAS  Google Scholar 

  58. Tang R, Yang H, Gong Y, You M, Liu Z, Choi JR, et al. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip. 2017;17(7):1270–9.

    Article  CAS  Google Scholar 

  59. Hicke B, Pasko C, Groves B, Ager E, Corpuz M, Frech G, et al. Automated detection of toxigenic Clostridium difficile in clinical samples: isothermal tcdB amplification coupled to array-based detection. J Clin Microbiol. 2012;50(8):2681–7.

    Article  Google Scholar 

  60. Branavan M, Mackay RE, Craw P, Naveenathayalan A, Ahern JC, Sivanesan T, et al. Modular development of a prototype point of care molecular diagnostic platform for sexually transmitted infections. Med Eng Phys. 2016;38(8):741–8.

    Article  Google Scholar 

  61. Ha ML, Zhang Y, Lee NY. A functionally integrated thermoplastic microdevice for one-step solid-phase-based nucleic acid purification and isothermal amplification for facile detection of foodborne pathogen. Biotechnol Bioeng. 2016;113(12):2614–23.

    Article  CAS  Google Scholar 

  62. Andresen D, von Nickisch-Rosenegk M, Bier FF. Helicase-dependent OnChip- amplification and its use in multiplex pathogenic detection. Clin Chim Acta. 2009;403:244–8.

  63. Andresen D, von Nickisch-Rosenegk M, Bier FF. Helicase-dependent amplification: use in on-chip amplification and potential for point-of-care diagnostics. Expert Rev Mol Diagn. 2009;9(7):645–50.

  64. Barreda-García S, Miranda-Castro R, de-los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Solid-phase helicase-dependent amplification and electrochemical detection of Salmonella on highly stable oligonucleotide-modified ITO electrodes. Chem Commun. 2017;53:9721–4.

  65. Wu X, Chen C, Xiao X, Deng MJ. Development of reverse transcription thermostable helicase-dependent DNA amplification for the detection of tomato spotted wilt virus. J AOAC Int. 2016;99(6):1596–9.

    Article  CAS  Google Scholar 

  66. Arif M, Ochoa-Corona FM, Opit GP, Li Z-H, Kucerova Z, Stejskal V, et al. PCR and isothermal-based molecular identification of the stored-product psocid pest Lepinotus reticulatus (Psocoptera: Trogiidae). J Stor Prod Res. 2012;49:184–8.

  67. Chen X, Wu X, Gan M, Xu F, He L, Yang D, et al. Rapid detection of Staphylococcus aureus in dairy and meat foods by combination of capture with silica-coated magnetic nanoparticles and thermophilic helicase-dependent isothermal amplification. J Dairy Sci. 2015;98(3):1563–70.

  68. Artiushin S, Tong Y, Timoney J, Lemieux B, Schlegel A, Kong H. Thermophilic helicase-dependent DNA amplification using the IsoAmp™ SE experimental kit for rapid detection of Streptococcus equi subspecies equi in clinical samples. J Vet Diagn Invest. 2011;23(5):909–14.

  69. Motre A, Kong R, Li Y. Improving isothermal DNA amplification speed for the rapid detection of Mycobacterium tuberculosis. J Microbiol Methods. 2011;84(2):343–5.

    Article  CAS  Google Scholar 

  70. Du X-J, Zhou T-J, Li P, Wang S. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay. Mol Cell Probes 2017;34:37–44.

  71. Ao W, Clifford A, Corpuz M, Jenison R. A novel approach to eliminate detection of contaminating Staphylococcal species introduced during clinical testing. Plos One. 2017;12(2):e0171915.

    Article  Google Scholar 

  72. Marx V. PCR heads into the field. Nature Methods. 2015;12(5):393–7.

    Article  CAS  Google Scholar 

  73. Quidel AmpliVue products. http://www.quidel.com/molecular-diagnostics/amplivue-products. Accessed 16 August 2017.

  74. Weber NC, Klepser ME, Akers JM, Klepser DG, Adams AJ. Use of CLIA-waived point-of-care tests for infectious diseases in community pharmacies in the United States. Expert Rev Mol Diagn. 2016;16(2):253–64.

    Article  CAS  Google Scholar 

  75. Quidel Solana products. http://www.quidel.com/molecular-diagnostics/solana-products. Accessed 16 August 2017.

Download references

Acknowledgements

This work was financially supported by the Spanish Ministerio de Economía y Competitividad (Project no. CTQ2015-63567-R), the Principado de Asturias government (Project FC15-GRUPIN14-025), and cofinanced by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Jesús Lobo-Castañón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreda-García, S., Miranda-Castro, R., de-los-Santos-Álvarez, N. et al. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal Bioanal Chem 410, 679–693 (2018). https://doi.org/10.1007/s00216-017-0620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0620-3

Keywords

Profiles

  1. Rebeca Miranda-Castro