Analytical and Bioanalytical Chemistry

, Volume 409, Issue 27, pp 6305–6314 | Cite as

Plasmonic cell nanocoating: a new concept for rapid microbial screening

  • Ke Xu
  • Minh-Phuong N. Bui
  • Aiqin Fang
  • Abdennour Abbas
Paper in Forefront


Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfu mL–1 for E. coli bacteria and 1500 cfu mL–1 for M. circinelloides fungi using a hand-held fluorescent reader.

Graphical abstract

A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.


Cell nanocoating Gold nanoparticles Disulfide-bond containing (Dsbc) surface proteins Chitin Microbial screening 



The authors thank Dr. Renu Singh for help acquiring the Raman spectroscopy data and Yan Wu for help with microbial culture. The authors are grateful for the financial support of the National Science Foundation award No. 1605191, the University of Minnesota MnDRIVE Global Food Venture, the USDA National Institute of Food and Agriculture, Hatch project 1006789, General Mills, Schwan Food Company Graduate Fellowship, and the Midwest Dairy Association.

Compliance with ethical standards

This study has been approved by the Ethical committee of University of Minnesota and has been performed in accordance to the ethical standards and guidelines of University of Minnesota.

Conflict of interest

Dr. Abbas has filled out an international patent application no. PCT/US2017/015044, related to “Methods of attaching probes to microorganisms and methods of use”. The authors declare that they have no financial or nonfinancial conflict of interest.

Supplementary material

216_2017_612_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1343 kb)


  1. 1.
    Davis SA, Burkett SL, Mendelson NH, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature. 1997;385(6615):420–3.CrossRefGoogle Scholar
  2. 2.
    Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA. Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem. 2003;115(20):2408–11.CrossRefGoogle Scholar
  3. 3.
    Konnova SA, Lvov YM, Fakhrullin RF. Nanoshell assembly for magnet-responsive oil-degrading bacteria. Langmuir. 2016;32(47):12552–8.CrossRefGoogle Scholar
  4. 4.
    Däwlätşina GI, Minullina RT, Fakhrullin RF. Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans. Nanoscale. 2013;5(23):11761–9.CrossRefGoogle Scholar
  5. 5.
    Berry V, Saraf RF. Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angew Chem Int Ed. 2005;44(41):6668–73.CrossRefGoogle Scholar
  6. 6.
    Fakhrullin RF, Lvov YM. “Face-lifting” and “make-up” for microorganisms: layer-by-layer polyelectrolyte nanocoating. ACS Nano. 2012;6(6):4557–64.CrossRefGoogle Scholar
  7. 7.
    Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS. Nanocoating of single cells: from maintenance of cell viability to manipulation of cellular activities. Adv Mater. 2014;26(13):2001–10.CrossRefGoogle Scholar
  8. 8.
    Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem. 2009;395(8):2559.CrossRefGoogle Scholar
  9. 9.
    Fakhrullin RF, García-Alonso J, Paunov VN. A direct technique for preparation of magnetically functionalised living yeast cells. Soft Matter. 2010;6(2):391–7.CrossRefGoogle Scholar
  10. 10.
    Fakhrullin RF, Zamaleeva AI, Morozov MV, Tazetdinova DI, Alimova FK, Hilmutdinov AK. Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir. 2009;25(8):4628–34.CrossRefGoogle Scholar
  11. 11.
    Yang SH, Lee KB, Kong B, Kim JH, Kim HS, Choi IS. Biomimetic encapsulation of individual cells with silica. Angew Chem Int Ed. 2009;48(48):9160–3.CrossRefGoogle Scholar
  12. 12.
    Reith F, Rogers SL, McPhail D, Webb D. Biomineralization of gold: biofilms on bacterioform gold. Science. 2006;313(5784):233–6.CrossRefGoogle Scholar
  13. 13.
    Sugunan A, Melin P, Schnürer J, Hilborn JG, Dutta J. Nutrition-driven assembly of colloidal nanoparticles: growing fungi assemble gold nanoparticles as microwires. Adv Mater. 2007;19(1):77–81.CrossRefGoogle Scholar
  14. 14.
    Seiter JA, Jay JM. Comparison of direct serial dilution and most-probable-number methods for determining endotoxins in meats by the Limulus amoebocyte lysate test. Appl Environ Microbiol. 1980;40(1):177–8.Google Scholar
  15. 15.
    Bottari B, Santarelli M, Neviani E. Determination of microbial load for different beverages and foodstuff by assessment of intracellular ATP. Trends Food Sci Technol. 2015;44(1):36–48.CrossRefGoogle Scholar
  16. 16.
    Fulford MR, Walker JT, Martin MV, Marsh PD. Total viable counts, ATP, and endotoxin levels as potential markers of microbial contamination of dental unit water systems. Br. Dent J. 2004;196(3):157–9.CrossRefGoogle Scholar
  17. 17.
    Omidbakhsh N, Ahmadpour F, Kenny N. How reliable are ATP bioluminescence meters in assessing decontamination of environmental surfaces in healthcare settings? PLoS One. 2014;9(6):e99951.CrossRefGoogle Scholar
  18. 18.
    Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22(1):87–108.CrossRefGoogle Scholar
  19. 19.
    Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME. Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev. 2005;29(5):877–96.CrossRefGoogle Scholar
  20. 20.
    Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ET, Shaw DH. Lipopolysaccharides of gram-negative bacteria. Curr Top Membr Trans. 1982;17:79–151.CrossRefGoogle Scholar
  21. 21.
    Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nat Rev Microbiol. 2008;6(4):276–87.CrossRefGoogle Scholar
  22. 22.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.CrossRefGoogle Scholar
  23. 23.
    Bui M-PN, Ahmed S, Abbas A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 2015;15(9):6239–46.CrossRefGoogle Scholar
  24. 24.
    Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.CrossRefGoogle Scholar
  25. 25.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem. 1995;67(4):735–43.CrossRefGoogle Scholar
  26. 26.
    Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. 2007;107(11):4797–862.CrossRefGoogle Scholar
  27. 27.
    Abbas A, Kattumenu R, Tian L, Singamaneni S. Molecular linker-mediated self-assembly of gold nanoparticles: understanding and controlling the dynamics. Langmuir. 2013;29(1):56–64.CrossRefGoogle Scholar
  28. 28.
    Dutton RJ, Boyd D, Berkmen M, Beckwith J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. PNAS. 2008;105(33):11933–8.CrossRefGoogle Scholar
  29. 29.
    Heras B, Shouldice SR, Totsika M, Scanlon MJ, Schembri MA, Martin JL. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol. 2009;7(3):215–25.CrossRefGoogle Scholar
  30. 30.
    Hogg PJ. Disulfide bonds as switches for protein function. Trends Biochem Sci. 2003;28(4):210–4.CrossRefGoogle Scholar
  31. 31.
    Varnholt B, Oulevey P, Luber S, Kumara C, Dass A, Bürgi T. Structural information on the Au–S interface of thiolate-protected gold clusters: a Raman spectroscopy study. J Phys Chem C. 2014;118(18):9604–11.CrossRefGoogle Scholar
  32. 32.
    Regeimbal J, Bardwell JCA. Disulfide Bond Formation in Prokaryotes and Eukaryotes. In: Dalbey RE, Heijne Gv, editors. Protein Targeting, Transport, and Translocation. London: Academic Press; 2002. p. 131-50.Google Scholar
  33. 33.
    Abbas A, Fei M, Tian L, Singamaneni S. Trapping proteins within gold nanoparticle assemblies: dynamically tunable hot-spots for nanobiosensing. Plasmonics. 2013;8(2):537–44.CrossRefGoogle Scholar
  34. 34.
    Latgé J-P. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol. 2007;66(2):279–90.CrossRefGoogle Scholar
  35. 35.
    Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR. The thiol-Michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater. 2014;26(1):724–44.CrossRefGoogle Scholar
  36. 36.
    Armbruster DA, Pry T. Limit of blank, limit of detection, and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49–52.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of Minnesota Twin CitiesSaint PaulUSA

Personalised recommendations