Skip to main content
Log in

A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Smartphone biosensors could be cost-effective, portable instruments to be used for the readout of liquid colorimetric assays. However, current reported smartphone colorimetric readers have relied on photos of liquid assays captured using a camera, and then analyzed using software programs. This approach results in a relatively low accuracy and low generality. In this work, we reported a novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays. The portable and low-cost ($0.15) reader utilized a simplified electronic and light path design. Furthermore, our reported smartphone colorimetric reader can be compatible with different smartphones. As a proof of principle, the utility of this device was demonstrated using it in conjunction with an enzyme-linked immunosorbent assay to detect zearalenone. Results were consistent with those obtained using a professional microplate reader. The developed smartphone colorimetric reader was capable of providing scalable, cost-effective, and accurate results for liquid colorimetric assays that related to clinical diagnoses, environment pollution, and food testing.

A novel smartphone colorimetric reader that has been integrated with an ambient light sensor and a 3D printed attachment for the readout of liquid colorimetric assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Drain PK, Hyle EP, Noubary F, Freedberg KA, Wilson D, Bishai WR, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14(3):239–49.

    Article  Google Scholar 

  2. Kaushik A, Vasudev A, Arya SK, Pasha SK, Bhansali S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens Bioelectron. 2014;53:499–512.

    Article  CAS  Google Scholar 

  3. Song Y, Huang Y-Y, Liu X, Zhang X, Ferrari M, Qin L. Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol. 2014;32(3):132–9.

    Article  CAS  Google Scholar 

  4. Coskun AF, Ozcan A. Computational imaging, sensing and diagnostics for global health applications. Curr Opin Biotechnol. 2014;25:8–16.

    Article  CAS  Google Scholar 

  5. Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–80.

    Article  CAS  Google Scholar 

  6. Christodouleas DC, Nemiroski A, Kumar AA, Whitesides GM. Broadly available imaging devices enable high-quality low-cost photometry. Anal Chem. 2015;87(18):9170–8.

    Article  CAS  Google Scholar 

  7. Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S. Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors. 2006;6(7):756–82.

    Article  CAS  Google Scholar 

  8. Killard AJ, Smyth MR. Creatinine biosensors: principles and designs. Trends Biotechnol. 2000;18(10):433–7.

    Article  CAS  Google Scholar 

  9. Fossati P, Prencipe L, Berti G. Enzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement. Clin Chem. 1983;29(8):1494–6.

    CAS  Google Scholar 

  10. Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal Chem. 2012;85(1):308–12.

    Article  Google Scholar 

  11. Xiong D, Li H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology. 2008;19(46):465502.

    Article  Google Scholar 

  12. Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1–2):161–70.

    Article  CAS  Google Scholar 

  13. Liu J, Lu Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem. 2006;118(1):96–100.

    Article  Google Scholar 

  14. Chang C-C, Chen C-Y, Chuang T-L, Wu T-H, Wei S-C, Liao H, et al. Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron. 2016;78:200–5.

    Article  CAS  Google Scholar 

  15. Huo Y, Qi L, Lv X-J, Lai T, Zhang J, Zhang Z-Q. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron. 2016;78:315–20.

    Article  CAS  Google Scholar 

  16. Yun W, Cai D, Jiang J, Zhao P, Huang Y, Sang G. Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy. Biosens Bioelectron. 2016;80:187–93.

    Article  CAS  Google Scholar 

  17. Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, et al. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens Bioelectron. 2016;78:73–9.

    Article  CAS  Google Scholar 

  18. Yang Y-C, Tseng W-L. 1, 4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin–avidin-mediated immunoassay with naked-eye detection. Anal Chem. 2016;88(10):5355–62.

    Article  CAS  Google Scholar 

  19. Zheng L, Wei J, Lv X, Bi Y, Wu P, Zhang Z, et al. Detection and differentiation of influenza viruses with glycan-functionalized gold nanoparticles. Biosens Bioelectron. 2017;91:46–52.

    Article  CAS  Google Scholar 

  20. Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, et al. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl Mater Inter. 2017;9(11)10027–10033.

  21. Zhang D, Liu Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens Bioelectron. 2016;75:273–84.

    Article  CAS  Google Scholar 

  22. Ozcan A. mobile Phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.

    Article  CAS  Google Scholar 

  23. Hao N, Xiong M, Zhang J-d, Xu J-J, Chen H-Y. Portable thermo-powered high-throughput visual electrochemiluminescence sensor. Anal Chem. 2013;85(24):11715–9.

    Article  CAS  Google Scholar 

  24. McLeod E, Wei Q, Ozcan A. Democratization of nanoscale imaging and sensing tools using photonics. Anal Chem. 2015;87(13):6434–45.

    Article  CAS  Google Scholar 

  25. Kim J, Jeerapan I, Imani S, Cho TN, Bandodkar A, Cinti S, et al. Noninvasive alcohol monitoring using a wearable tattoo-based Iontophoretic-biosensing system. ACS Sensors. 2016;1(8):1011–9.

    Article  CAS  Google Scholar 

  26. Zhang D, Lu Y, Zhang Q, Liu L, Li S, Yao Y, et al. Protein detecting with smartphone-controlled electrochemical impedance spectroscopy for point-of-care applications. Sensor Actual B-Chem. 2016;222:994–1002.

    Article  CAS  Google Scholar 

  27. Doeven EH, Barbante GJ, Harsant AJ, Donnelly PS, Connell TU, Hogan CF, et al. Mobile phone-based electrochemiluminescence sensing exploiting the ‘USB on-the-Go’ protocol. Sensor Actual B-Chem. 2015;216:608–13.

    Article  CAS  Google Scholar 

  28. Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re 1.

    Article  Google Scholar 

  29. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.

    Article  CAS  Google Scholar 

  30. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.

    Article  CAS  Google Scholar 

  31. Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JH. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.

    Article  CAS  Google Scholar 

  32. Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed. 2012;51(46):11585–8.

    Article  CAS  Google Scholar 

  33. Grasse EK, Torcasio MH, Smith AW. Teaching UV–vis spectroscopy with a 3D-printable smartphone spectrophotometer. J Chem Educ. 2015;93(1):146–51.

    Article  Google Scholar 

  34. Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, et al. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad. 2014;111(33):11984–9.

    Article  CAS  Google Scholar 

  35. Choi JR, Hu J, Feng S, Abas WABW, Pingguan-Murphy B, Xu F. Sensitive biomolecule detection in lateral flow assay with a portable temperature–humidity control device. Biosens Bioelectron. 2016;79:98–107.

    Article  CAS  Google Scholar 

  36. Wang S, Zhao X, Khimji I, Akbas R, Qiu W, Edwards D, et al. Integration of cell phone imaging with microchip ELISA to detect ovarian cancer HE4 biomarker in urine at the point-of-care. Lab Chip. 2011;11(20):3411–8.

    Article  CAS  Google Scholar 

  37. Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, Wei Q, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9(8):7857–66.

    Article  CAS  Google Scholar 

  38. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.

    Article  CAS  Google Scholar 

  39. Wang L-J, Sun R, Vasile T, Chang Y-C, Li L. High-throughput optical sensing immunoassays on smartphone. Anal Chem. 2016;88(16):8302–8.

    Article  CAS  Google Scholar 

  40. Su K, Zou Q, Zhou J, Zou L, Li H, Wang T, et al. High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sensor Actual B-Chem. 2015;216:134–40.

    Article  CAS  Google Scholar 

  41. Kwon L, Long K, Wan Y, Yu H, Cunningham B. Medical diagnostics with mobile devices: comparison of intrinsic and extrinsic sensing. Biotechnol Adv. 2016;34(3):291–304.

    Article  CAS  Google Scholar 

  42. Fu Q, Wu Z, Li X, Yao C, Yu S, Xiao W, et al. Novel versatile smart phone based microplate readers for on-site diagnoses. Biosens Bioelectron. 2016;81:524–31.

    Article  CAS  Google Scholar 

  43. Fu Q, Wu Z, Xu F, Li X, Yao C, Xu M, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip. 2016;16(10):1927–33.

    Article  CAS  Google Scholar 

  44. Luo M, Tang Y, Xiang J, Zhang X, Fu Q, Wang H. Preparation of anti-zearalenone monoclonal antibody and preliminary establishment of colloidal gold immunochromatographic assay for zearalenone. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol Immunol. 2013;29(7):729–33.

    CAS  Google Scholar 

  45. Liu X, Xiang JJ, Tang Y, Zhang XL, Fu QQ, Zou JH, et al. Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal Chim Acta. 2012;745(10):99.

    CAS  Google Scholar 

  46. Fu Q, Liu HL, Wu Z, An L, Yao C, Li X, et al. Rough surface Au@Ag core–shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotechnol. 2015;13(1):81.

    Article  Google Scholar 

  47. Liang J, Yao C, Li X, Wu Z, Huang C, Fu Q, et al. Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen. Biosens Bioelectron. 2015;69:128.

    Article  CAS  Google Scholar 

  48. Warner R, Ram BP, Hart LP, Pestka JJ. Screening for zearalenone in corn by competitive direct enzyme-linked immunosorbent assay. J Agric Food Chem. 1986;34(4):714–7.

    Article  CAS  Google Scholar 

  49. Chun HS, Choi EH, Chang H-J, Choi S-W, Eremin SA. A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta. 2009;639(1):83–9.

    Article  CAS  Google Scholar 

  50. Li X, Li P, Zhang Q, Li R, Zhang W, Zhang Z, et al. Multi-component immunochromatographic assay for simultaneous detection of aflatoxin B 1, ochratoxin a and zearalenone in agro-food. Biosens Bioelectron. 2013;49:426–32.

    Article  CAS  Google Scholar 

  51. Shim W-B, Kim K-Y, Chung D-H. Development and validation of a gold nanoparticle immunochromatographic assay (ICG) for the detection of zearalenone. J Agric Food Chem. 2009;57(10):4035–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Key Development Program of China (2016YFD0500600); National Key Technology R & D Program, No. 2008BAK42B-05; and Guangdong Province Key Scientific Research, No. 2013A022100031.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Tang or Hong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Fu, Q., Li, D. et al. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem 409, 6567–6574 (2017). https://doi.org/10.1007/s00216-017-0605-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0605-2

Keywords

Navigation