Skip to main content
Log in

Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As an important cultivation practice used for flue-cured tobacco, topping affects diverse biological processes in the later stages of development and growth. Some studies have focused on using tobacco genes to reflect the physiological changes caused by topping. However, the complex metabolic shifts in the leaf resulting from topping have not yet been investigated in detail. In this study, a comprehensive metabolic profile of primary, secondary, and lipid metabolism in flue-cured tobacco leaf was generated with use of a multiple platform consisting of gas chromatography–mass spectrometry, capillary electrophoresis–mass spectrometry, and liquid chromatography–mass spectrometry/ultraviolet spectroscopy. A total of 367 metabolites were identified and determined. Both principal component analysis and the number of significantly different metabolites indicated that topping had the greatest influence on the upper leaves. During the early stage of topping, great lipid level variations in the upper leaves were observed, and antioxidant defense metabolites were accumulated. This indicated that the topping activated lipid turnover and the antioxidant defense system. At the mature stage, lower levels of senescence-related metabolites and higher levels of secondary metabolites were found in the topped mature leaves. This implied that topping delayed leaf senescence and promoted secondary metabolite accumulation. This study provides a global view of the metabolic perturbation in response to topping.

Metabolic alterations in tobacco leaf in response to topping using a multiplatform metabolomics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weeks WW, Seltmann H. Effect of sucker control on the volatile compounds in flue-cured tobacco. J Agric Food Chem. 1986;34:899–904.

    Article  CAS  Google Scholar 

  2. Zhang J, Guo H, Kan Y, Liu W. Differential expression of miRNAs in response to topping in flue-cured tobacco (Nicotiana tabacum) roots. PLoS One. 2011;6(12):e28565.

    Article  Google Scholar 

  3. Qi Y, Guo H, Li K, Liu W. Comprehensive analysis of differential genes and miRNA profiles for discovery of topping-responsive genes in flue-cured tobacco roots. FEBS J. 2012;279(6):1054–70.

    Article  CAS  Google Scholar 

  4. Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, et al. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol. 2012;12:28.

    Article  CAS  Google Scholar 

  5. Schauer N, Fernie AR. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 2006;11(10):508–16.

    Article  CAS  Google Scholar 

  6. Saric J, Want EJ, Duthaler U, Lewis M, Keiser J, Shockcor JP, et al. Systematic evaluation of extraction methods for multiplatform-based metabotyping: application to the Fasciola hepatica metabolome. Anal Chem. 2012;84(16):6963–72.

    Article  CAS  Google Scholar 

  7. Teh HF, Neoh BK, Hong MP, Low JY, Ng TL, Ithnin N, et al. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp. PLoS One. 2013;8(4):e61344.

    Article  CAS  Google Scholar 

  8. Tcherkez G, Guérard F, Gilard F, Lamothe M, Mauve C, Gout E, et al. Metabolomic characterisation of the functional division of nitrogen metabolism in variegated leaves. Funct Plant Biol. 2012;39(12):959–67.

    Article  CAS  Google Scholar 

  9. Zhou J, Zhang L, Chang Y, Lu X, Zhu Z, Xu G. Alteration of leaf metabolism in Bt-transgenic rice (Oryza sativa L.) and its wild type under insecticide stress. J. Proteome Res. 2012;11(8):4351–60.

    Article  CAS  Google Scholar 

  10. Zhang L, Wang X, Guo J, Xia Q, Zhao G, Zhou H, et al. Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. J Agric Food Chem. 2013;61(11):2597–605.

    Article  CAS  Google Scholar 

  11. Zhao Y, Zhao C, Lu X, Zhou H, Li Y, Zhou J, et al. Investigation of the relationship between the metabolic profile of tobacco leaves in different planting regions and climate factors using a pseudotargeted method based on gas chromatography/mass spectrometry. J Proteome Res. 2013;12(11):5072–83.

    Article  CAS  Google Scholar 

  12. Ye G, Liu Y, Yin P, Zeng Z, Huang Q, Kong H, et al. Study of induction chemotherapy efficacy in oral squamous cell carcinoma using pseudotargeted metabolomics. J Proteome Res. 2014;13(4):1994–2004.

    Article  CAS  Google Scholar 

  13. Chang Y, Zhao C, Zhu Z, Wu Z, Zhou J, Zhao Y, et al. Metabolic profiling based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. Plant Mol Biol. 2012;78(4-5):477–87.

    Article  CAS  Google Scholar 

  14. Chen S, Kong H, Lu X, Li Y, Yin P, Zeng Z, et al. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Anal Chem. 2013;85(17):8326–33.

    Article  CAS  Google Scholar 

  15. Li L, Zhao C, Chang Y, Lu X, Zhang J, Zhao Y, et al. Metabolomics study of cured tobacco using liquid chromatography with mass spectrometry: Method development and its application in investigating the chemical differences of tobacco from three growing regions. J Sep Sci. 2014;37(9-10):1067–74.

    Article  CAS  Google Scholar 

  16. Li L, Lu X, Zhao J, Zhang J, Zhao Y, Zhao C, et al. Lipidome and metabolome analysis of fresh tobacco leaves in different geographical regions using liquid chromatography–mass spectrometry. Anal Bioanal Chem. 2015;407(17):5009–20.

    Article  CAS  Google Scholar 

  17. Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, et al. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res. 2015;14(5):2322–30.

    Article  CAS  Google Scholar 

  18. Morgenthal K, Wienkoop S, Scholz M, Selbig J, Weckwerth W. Correlative GC-TOF-MS-based metabolite profiling and LC-MS-based protein profiling reveal time-related systemic regulation of metabolite–protein networks and improve pattern recognition for multiple biomarker selection. Metabolomics. 2005;1(2):109–21.

    Article  CAS  Google Scholar 

  19. Kusano M, Redestig H, Hirai T, Oikawa A, Matsuda F, Fukushima A, et al. Covering chemical diversity of genetically-modified tomatoes using metabolomics for objective substantial equivalence assessment. PLoS One. 2011;6(2):e16989.

    Article  CAS  Google Scholar 

  20. Naz S, García A, Barbas C. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal Chem. 2013;85(22):10941–8.

    Article  CAS  Google Scholar 

  21. Zhao J, Hu C, Zeng J, Zhao Y, Zhang J, Chang Y, et al. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics. 2014;10(5):805–15.

    Article  CAS  Google Scholar 

  22. Shen D, Lu X, Chang Y, Zhang J, Zhao Y, Wang Y, et al. Determination of phenolic compounds in fresh tobacco leaves by high performance liquid chromatography-ultraviolet/mass spectrometry. Chin J Chromatogr. 2014;32(1):40–6.

    Article  CAS  Google Scholar 

  23. Sun B, Zhang F, Chu G, Li F, Wang R, Luo Z, et al. Effects of different environmental locations on alkaloid accumulation in tobacco leaves in China. J Food Agric Environ. 2013;11(2):1337–42.

    Google Scholar 

  24. Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K. Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep. 2015;5:10533.

    Article  Google Scholar 

  25. Noctor G, Lelarge-Trouverie C, Mhamdi A. The metabolomics of oxidative stress. Phytochemistry. 2015;112:33–53.

    Article  CAS  Google Scholar 

  26. Schaller F. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J Exp Bot. 2001;52(354):11–23.

    Article  CAS  Google Scholar 

  27. Schaller H. The role of sterols in plant growth and development. Prog Lipid Res. 2003;42(3):163–75.

    Article  CAS  Google Scholar 

  28. Chen Q, Steinhauer L, Hammerlindl J, Keller W, Zou J. Biosynthesis of phytosterol esters: identification of a sterol O-acyltransferase in Arabidopsis. Plant Physiol. 2007;145(3):974–84.

    Article  CAS  Google Scholar 

  29. Dyas L, Goad LJ. Steryl fatty acyl esters in plants. Phytochemistry. 1993;34(1):17–29.

    Article  CAS  Google Scholar 

  30. Zimowski J, Wojciechowski ZA. Partial-purification and specificity of triacylglycerol: sterol acyltransferase from Sinapis alba. Phytochemistry. 1981;20(8):1799–803.

    Article  CAS  Google Scholar 

  31. Boer VM, de Winde JH, Pronk JT, Piper MD. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem. 2003;278(5):3265–74.

    Article  CAS  Google Scholar 

  32. Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, et al. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 2005;138(1):304–18.

    Article  CAS  Google Scholar 

  33. Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ. Balancing metabolites in drought: the sulfur assimilation conundrum. Trends Plant Sci. 2013;18(1):18–29.

    Article  CAS  Google Scholar 

  34. Balint R, Cooper G, Staebell M, Filner P. N-Caffeoyl-4-amino-normal-butyric acid, a new flower-specific metabolite in cultured tobacco cell and tobacco plants. J Biol Chem. 1987;262(23):11026–31.

    CAS  Google Scholar 

  35. Minocha R, Majumdar R, Minocha SC. Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 2014;5:175.

    Article  Google Scholar 

  36. Cvikrová M, Gemperlová L, Martincová O, Vanková R. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiol. Biochem. 2013;73:7–15.

    Article  Google Scholar 

  37. Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–55.

    Article  CAS  Google Scholar 

  38. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–30.

    Article  CAS  Google Scholar 

  39. Baldwin IT, Schmelz EA, Ohnmeiss TE. Wound-induced changes in root and shoot jasmonin acid pools correlate with induced nicotine synthesis inNicotiana sylvestris spegazzini and comes. J. Chem. Ecol. 1994;20(8):2139–56.

    Article  CAS  Google Scholar 

  40. Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballare CL. Remote sensing of future competitors: Impacts on plant defenses. Proc Natl Acad Sci U S A. 2006;103(18):7170–4.

    Article  CAS  Google Scholar 

  41. Zhang W, Liu T, Ren G, Hortensteiner S, Zhou Y, Cahoon EB, et al. Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing. Plant Physiol. 2014;166(1):70–9.

    Article  Google Scholar 

  42. Rise M, Cojocaru M, Gottlieb HE, Goldschmidt EE. Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol. 1989;89(4):1028–30.

    Article  CAS  Google Scholar 

  43. Lim PO, Kim HJ, Nam HG. Leaf senescence. Annu Rev Plant Biol. 2007;58:115–36.

    Article  CAS  Google Scholar 

  44. Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, et al. Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res. 2015;7:66–77.

    Article  Google Scholar 

  45. Bouvier-Nave P, Berna A, Noiriel A, Compagnon V, Carlsson AS, Banas A, et al. Involvement of the phospholipid sterol acyltransferase1 in plant sterol homeostasis and leaf senescence. Plant Physiol. 2010;152(1):107–19.

    Article  CAS  Google Scholar 

  46. Koiwai A, Matsuzaki T, Suzuki F, Kawashima N. Changes in total and polar lipids and their fatty acid composition in tobacco leaves during growth and senescence. Plant Cell Physiol. 1981;22:1059–65.

    CAS  Google Scholar 

  47. Wingler A, Purdy S, MacLean JA, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot. 2006;57(2):391–9.

    Article  CAS  Google Scholar 

  48. Lin SS, Manchester JK, Gordon JI. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J Biol Chem. 2001;276(38):36000–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Lu or Guowang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, L., Zhao, Y. et al. Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Anal Bioanal Chem 410, 839–851 (2018). https://doi.org/10.1007/s00216-017-0596-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0596-z

Keywords

Navigation